Joint arterial input function and tracer kinetic parameter estimation from undersampled dynamic contrast-enhanced MRI using a model consistency constraint

被引:17
|
作者
Guo, Yi [1 ]
Lingala, Sajan Goud [1 ]
Bliesener, Yannick [1 ]
Lebel, R. Marc [2 ]
Zhu, Yinghua [1 ]
Nayak, Krishna S. [1 ]
机构
[1] Univ Southern Calif, Viterbi Sch Engn, Ming Hsieh Dept Elect Engn, 3740 McClinitock Ave,EEB 400, Los Angeles, CA 90089 USA
[2] GE Healthcare, Calgary, AB, Canada
基金
美国国家卫生研究院;
关键词
model-based reconstruction; compressed sensing; DCE-MRI; kinetic modeling; BRAIN-BARRIER PERMEABILITY; VASCULAR-PERMEABILITY; MULTIPLE-SCLEROSIS; GD-DTPA; RECONSTRUCTION; GLIOBLASTOMA; SELECTION; TUMORS; TIME; TOOL;
D O I
10.1002/mrm.26904
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo develop and evaluate a model-based reconstruction framework for joint arterial input function (AIF) and kinetic parameter estimation from undersampled brain tumor dynamic contrast-enhanced MRI (DCE-MRI) data. MethodsThe proposed method poses the tracer-kinetic (TK) model as a model consistency constraint, enabling the flexible inclusion of different TK models and TK solvers, and the joint estimation of the AIF. The proposed method is evaluated using an anatomic realistic digital reference object (DRO), and nine retrospectively down-sampled brain tumor DCE-MRI datasets. We also demonstrate application to 30-fold prospectively undersampled brain tumor DCE-MRI. ResultsIn DRO studies with up to 60-fold undersampling, the proposed method provided TK maps with low error that were comparable to fully sampled data and were demonstrated to be compatible with a third-party TK solver. In retrospective undersampling studies, this method provided patient-specific AIF with normalized root mean-squared-error (normalized by the 90th percentile value) less than 8% at up to 100-fold undersampling. In the 30-fold undersampled prospective study, the proposed method provided high-resolution whole-brain TK maps and patient-specific AIF. ConclusionThe proposed model-based DCE-MRI reconstruction enables the use of different TK solvers with a model consistency constraint and enables joint estimation of patient-specific AIF. TK maps and patient-specific AIF with high fidelity can be reconstructed at up to 100-fold undersampling in k,t-space. Magn Reson Med 79:2804-2815, 2018. (c) 2017 International Society for Magnetic Resonance in Medicine.
引用
收藏
页码:2804 / 2815
页数:12
相关论文
共 50 条
  • [21] Arterial input function calculation in dynamic contrast-enhanced MRI: an in vivo validation study using co-registered contrast-enhanced ultrasound imaging
    Mehrabian, Hatef
    Chandrana, Chaitanya
    Pang, Ian
    Chopra, Rajiv
    Martel, Anne L.
    EUROPEAN RADIOLOGY, 2012, 22 (08) : 1735 - 1747
  • [22] Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer
    Ingrisch, Michael
    Sourbron, Steven
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2013, 40 (03) : 281 - 300
  • [23] Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer
    Michael Ingrisch
    Steven Sourbron
    Journal of Pharmacokinetics and Pharmacodynamics, 2013, 40 : 281 - 300
  • [24] Estimating Kinetic Parameter Maps From Dynamic Contrast-Enhanced MRI Using Spatial Prior Knowledge
    Kelm, Bernd Michael
    Menze, Bjoern H.
    Nix, Oliver
    Zechmann, Christian M.
    Hamprecht, Fred A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (10) : 1534 - 1547
  • [25] A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: I. Simulations
    Schabel, Matthias C.
    Fluckiger, Jacob U.
    DiBella, Edward V. R.
    PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (16): : 4783 - 4806
  • [26] Estimation of the capillary level input function for dynamic contrast-enhanced MRI of the breast using a deep learning approach
    Bae, Jonghyun
    Huang, Zhengnan
    Knoll, Florian
    Geras, Krzysztof
    Sood, Terlika Pandit
    Feng, Li
    Heacock, Laura
    Moy, Linda
    Kim, Sungheon Gene
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (05) : 2536 - 2550
  • [27] Reproducibility and Optimal Arterial Input Function Selection in Dynamic Contrast-Enhanced Perfusion MRI in the Healthy Brain
    Cramer, Stig P.
    Larsson, Henrik B. W.
    Knudsen, Maria H.
    Simonsen, Helle J.
    Vestergaard, Mark B.
    Lindberg, Ulrich
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (04) : 1229 - 1240
  • [28] A novel approach to tracer-kinetic modeling for (macromolecular) dynamic contrast-enhanced MRI
    Jacobs, Igor
    Strijkers, Gustav J.
    Keizer, Henk M.
    Janssen, Henk M.
    Nicolay, Klaas
    Schabel, Matthias C.
    MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (03) : 1142 - 1153
  • [29] Comparison of tracer kinetic models in differentiating malignant from normal prostate tissue using dynamic contrast-enhanced MRI
    Zhang, Hongjiang
    Yang, Jing
    Wu, Kunhua
    Hou, Zujun
    Du, Ji
    Yan, Jianhua
    Zhao, Ying
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [30] A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: II. In vivo results
    Schabel, Matthias C.
    DiBella, Edward V. R.
    Jensen, Randy L.
    Salzman, Karen L.
    PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (16): : 4807 - 4823