Joint arterial input function and tracer kinetic parameter estimation from undersampled dynamic contrast-enhanced MRI using a model consistency constraint

被引:17
|
作者
Guo, Yi [1 ]
Lingala, Sajan Goud [1 ]
Bliesener, Yannick [1 ]
Lebel, R. Marc [2 ]
Zhu, Yinghua [1 ]
Nayak, Krishna S. [1 ]
机构
[1] Univ Southern Calif, Viterbi Sch Engn, Ming Hsieh Dept Elect Engn, 3740 McClinitock Ave,EEB 400, Los Angeles, CA 90089 USA
[2] GE Healthcare, Calgary, AB, Canada
基金
美国国家卫生研究院;
关键词
model-based reconstruction; compressed sensing; DCE-MRI; kinetic modeling; BRAIN-BARRIER PERMEABILITY; VASCULAR-PERMEABILITY; MULTIPLE-SCLEROSIS; GD-DTPA; RECONSTRUCTION; GLIOBLASTOMA; SELECTION; TUMORS; TIME; TOOL;
D O I
10.1002/mrm.26904
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo develop and evaluate a model-based reconstruction framework for joint arterial input function (AIF) and kinetic parameter estimation from undersampled brain tumor dynamic contrast-enhanced MRI (DCE-MRI) data. MethodsThe proposed method poses the tracer-kinetic (TK) model as a model consistency constraint, enabling the flexible inclusion of different TK models and TK solvers, and the joint estimation of the AIF. The proposed method is evaluated using an anatomic realistic digital reference object (DRO), and nine retrospectively down-sampled brain tumor DCE-MRI datasets. We also demonstrate application to 30-fold prospectively undersampled brain tumor DCE-MRI. ResultsIn DRO studies with up to 60-fold undersampling, the proposed method provided TK maps with low error that were comparable to fully sampled data and were demonstrated to be compatible with a third-party TK solver. In retrospective undersampling studies, this method provided patient-specific AIF with normalized root mean-squared-error (normalized by the 90th percentile value) less than 8% at up to 100-fold undersampling. In the 30-fold undersampled prospective study, the proposed method provided high-resolution whole-brain TK maps and patient-specific AIF. ConclusionThe proposed model-based DCE-MRI reconstruction enables the use of different TK solvers with a model consistency constraint and enables joint estimation of patient-specific AIF. TK maps and patient-specific AIF with high fidelity can be reconstructed at up to 100-fold undersampling in k,t-space. Magn Reson Med 79:2804-2815, 2018. (c) 2017 International Society for Magnetic Resonance in Medicine.
引用
收藏
页码:2804 / 2815
页数:12
相关论文
共 50 条
  • [1] Direct estimation of tracer-kinetic parameter maps from highly undersampled brain dynamic contrast enhanced MRI
    Guo, Yi
    Lingala, Sajan Goud
    Zhu, Yinghua
    Lebel, R. Marc
    Nayak, Krishna S.
    MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (04) : 1566 - 1578
  • [2] Blind estimation of the arterial input function in dynamic contrast-enhanced MRI using purity maximization
    Lin, Yu-Chun
    Chan, Tsung-Han
    Chi, Chong-Yung
    Ng, Shu-Hang
    Liu, Hao-Li
    Wei, Kuo-Chen
    Wai, Yau-Yau
    Wang, Chun-Chieh
    Wang, Jiun-Jie
    MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (05) : 1439 - 1449
  • [3] Effects of arterial input function selection on kinetic parameters in brain dynamic contrast-enhanced MRI
    Keil, Vera C.
    Maedler, Burkhard
    Gieseke, Juergen
    Fimmers, Rolf
    Hattingen, Elke
    Schild, Hans H.
    Hadizadeh, Dariusch R.
    MAGNETIC RESONANCE IMAGING, 2017, 40 : 83 - 90
  • [4] Operator dependency of arterial input function in dynamic contrast-enhanced MRI
    Kleppesto, Magne
    Bjornerud, Atle
    Groote, Inge Rasmus
    Kim, Minjae
    Vardal, Jonas
    Larsson, Christopher
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2022, 35 (01) : 105 - 112
  • [5] Correction of arterial input function in dynamic contrast-enhanced MRI of the liver
    Wang, Hesheng
    Cao, Yue
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2012, 36 (02) : 411 - 421
  • [6] Operator dependency of arterial input function in dynamic contrast-enhanced MRI
    Magne Kleppestø
    Atle Bjørnerud
    Inge Rasmus Groote
    Minjae Kim
    Jonas Vardal
    Christopher Larsson
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2022, 35 : 105 - 112
  • [7] Blind Multi-Channel Estimation of Arterial Input Function in Dynamic Contrast-Enhanced MRI
    Jirik, R.
    Bartos, M.
    Standara, M.
    Taxt, T.
    ANALYSIS OF BIOMEDICAL SIGNALS AND IMAGES, 2010, : 373 - 377
  • [8] Arterial input function estimation compensating for inflow and partial voluming in dynamic contrast-enhanced MRI
    Tseng, Chih-Hsien
    Nagtegaal, Martijn A.
    van Osch, Matthias J. P.
    Jaspers, Jaap
    Romero, Alejandra Mendez
    Wielopolski, Piotr
    Smits, Marion
    Vos, Frans M.
    NMR IN BIOMEDICINE, 2024, 37 (12)
  • [9] Arterial input function and tracer kinetic model-driven network for rapid inference of kinetic maps in Dynamic Contrast-Enhanced MRI (AIF-TK-net)
    Kenelkamp, Joseph
    Lingala, Sajan Goud
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1450 - 1453
  • [10] Improved reliability of perfusion estimation in dynamic susceptibility contrast MRI by using the arterial input function from dynamic contrast enhanced MRI
    Tseng, Chih-Hsien
    Jaspers, Jaap
    Romero, Alejandra Mendez
    Wielopolski, Piotr
    Smits, Marion
    van Osch, Matthias J. P.
    Vos, Frans
    NMR IN BIOMEDICINE, 2024, 37 (01)