Matrix Integrals and Feynman Diagrams in the Kontsevich Model

被引:0
|
作者
Fiorenza, Domenico [1 ]
Murri, Riccardo [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
[2] Scuola Normale Super Pisa, I-56127 Pisa, Italy
关键词
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We review some relations occurring between the combinatorial intersection theory on the moduli spaces of stable curves and the asymptotic behavior of the 't Hooft-Kontsevich matrix integrals. In particular, we give an alternative proof of the Witten-Di Francesco-Itzykson-Zuber theorem -which expresses derivatives of the partition function of intersection numbers as matrix integrals- using techniques based on diagrammatic calculus and combinatorial relations among intersection numbers. These techniques extend to a more general interaction potential.
引用
收藏
页码:525 / 576
页数:52
相关论文
共 50 条
  • [21] FROM ONE-MATRIX MODEL TO KONTSEVICH MODEL
    AMBJORN, J
    KRISTJANSEN, CF
    MODERN PHYSICS LETTERS A, 1993, 8 (30) : 2875 - 2890
  • [22] COMPOSITENESS, FEYNMAN DIAGRAMS, AND REGGEIZED ABSORPTION MODEL
    RISK, C
    PHYSICAL REVIEW D, 1971, 3 (02): : 546 - &
  • [23] COMPUTER ANALYSIS OF FEYNMAN DIAGRAMS FOR A STATIC MODEL
    JAMES, PB
    NORTH, GR
    JOURNAL OF COMPUTATIONAL PHYSICS, 1971, 7 (02) : 354 - &
  • [24] A RESOURCE FOR SIGNS AND FEYNMAN DIAGRAMS OF THE STANDARD MODEL
    Romao, Jorge C.
    Silva, Joao P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (26):
  • [25] STOCHASTIC DIAGRAMS AND FEYNMAN DIAGRAMS
    HUFFEL, H
    LANDSHOFF, PV
    NUCLEAR PHYSICS B, 1985, 260 (3-4) : 545 - 568
  • [26] Duality of Orthogonal and Symplectic Matrix Integrals and Quaternionic Feynman Graphs
    Motohico Mulase
    Andrew Waldron
    Communications in Mathematical Physics, 2003, 240 : 553 - 586
  • [27] Duality of orthogonal and symplectic matrix integrals and quaternionic Feynman graphs
    Mulase, M
    Waldron, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 240 (03) : 553 - 586
  • [28] Macaulay matrix for Feynman integrals: linear relations and intersection numbers
    Chestnov, Vsevolod
    Gasparotto, Federico
    Mandal, Manoj K.
    Mastrolia, Pierpaolo
    Matsubara-Heo, Saiei J.
    Munch, Henrik J.
    Takayama, Nobuki
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [29] Macaulay matrix for Feynman integrals: linear relations and intersection numbers
    Vsevolod Chestnov
    Federico Gasparotto
    Manoj K. Mandal
    Pierpaolo Mastrolia
    Saiei J. Matsubara-Heo
    Henrik J. Munch
    Nobuki Takayama
    Journal of High Energy Physics, 2022
  • [30] MULTICUT SOLUTIONS OF THE MATRIX KONTSEVICH-PENNER MODEL
    ZAREMBO, KL
    CHEKOV, LO
    THEORETICAL AND MATHEMATICAL PHYSICS, 1992, 93 (02) : 1328 - 1336