Macaulay matrix for Feynman integrals: linear relations and intersection numbers

被引:28
|
作者
Chestnov, Vsevolod [1 ,2 ]
Gasparotto, Federico [1 ,2 ]
Mandal, Manoj K. [2 ]
Mastrolia, Pierpaolo [1 ,2 ]
Matsubara-Heo, Saiei J. [3 ,4 ]
Munch, Henrik J. [1 ,2 ]
Takayama, Nobuki [3 ]
机构
[1] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy
[2] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy
[3] Kobe Univ, Dept Math, Nada Ku, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
[4] Kumamoto Univ, Fac Adv Sci & Technol, Chuo Ku, 2-39-1 Kurokami, Kumamoto 8608555, Japan
关键词
Differential and Algebraic Geometry; Scattering Amplitudes; TWISTED PERIOD RELATIONS; DIFFERENTIAL-EQUATIONS; HYPERGEOMETRIC-FUNCTIONS; MIRROR SYMMETRY; REPRESENTATION; ALGORITHM; SYSTEMS; PARTS; BASES; MAP;
D O I
10.1007/JHEP09(2022)187
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We elaborate on the connection between Gel'fand-Kapranov-Zelevinsky systems, de Rham theory for twisted cohomology groups, and Pfaffian equations for Feynman Integrals. We propose a novel, more efficient algorithm to compute Macaulay matrices, which are used to derive Pfaffian systems of differential equations. The Pfaffian matrices are then employed to obtain linear relations for A-hypergeometric (Euler) integrals and Feynman integrals, through recurrence relations and through projections by intersection numbers.
引用
收藏
页数:57
相关论文
共 50 条
  • [1] Macaulay matrix for Feynman integrals: linear relations and intersection numbers
    Vsevolod Chestnov
    Federico Gasparotto
    Manoj K. Mandal
    Pierpaolo Mastrolia
    Saiei J. Matsubara-Heo
    Henrik J. Munch
    Nobuki Takayama
    Journal of High Energy Physics, 2022
  • [2] Decomposition of Feynman integrals by multivariate intersection numbers
    Frellesvig, Hjalte
    Gasparotto, Federico
    Laporta, Stefano
    Mandal, Manoj K.
    Mastrolia, Pierpaolo
    Mattiazzi, Luca
    Mizera, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (03)
  • [3] Decomposition of Feynman integrals by multivariate intersection numbers
    Hjalte Frellesvig
    Federico Gasparotto
    Stefano Laporta
    Manoj K. Mandal
    Pierpaolo Mastrolia
    Luca Mattiazzi
    Sebastian Mizera
    Journal of High Energy Physics, 2021
  • [4] Decomposition of Feynman integrals on the maximal cut by intersection numbers
    Hjalte Frellesvig
    Federico Gasparotto
    Stefano Laporta
    Manoj K. Mandal
    Pierpaolo Mastrolia
    Luca Mattiazzi
    Sebastian Mizera
    Journal of High Energy Physics, 2019
  • [5] Vector Space of Feynman Integrals and Multivariate Intersection Numbers
    Frellesvig, Hjalte
    Gasparotto, Federico
    Mandal, Manoj K.
    Mastrolia, Pierpaolo
    Mattiazzi, Luca
    Mizera, Sebastian
    PHYSICAL REVIEW LETTERS, 2019, 123 (20)
  • [6] Decomposition of Feynman integrals on the maximal cut by intersection numbers
    Frellesvig, Hjalte
    Gasparotto, Federico
    Laporta, Stefano
    Mandal, Manoj K.
    Mastrolia, Pierpaolo
    Mattiazzi, Luca
    Mizera, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (05)
  • [7] Decomposition of Feynman Integrals on the Maximal Cut by Intersection Numbers
    Mandal, Manoj K.
    14TH INTERNATIONAL SYMPOSIUM ON RADIATIVE CORRECTIONS, RADCOR2019, 2020,
  • [8] Feynman integrals and intersection theory
    Mastrolia, Pierpaolo
    Mizera, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (02)
  • [9] Feynman integrals and intersection theory
    Pierpaolo Mastrolia
    Sebastian Mizera
    Journal of High Energy Physics, 2019
  • [10] Cohen-Macaulay Property of Feynman Integrals
    Tellander, Felix
    Helmer, Martin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 399 (02) : 1021 - 1037