Macaulay matrix for Feynman integrals: linear relations and intersection numbers

被引:28
|
作者
Chestnov, Vsevolod [1 ,2 ]
Gasparotto, Federico [1 ,2 ]
Mandal, Manoj K. [2 ]
Mastrolia, Pierpaolo [1 ,2 ]
Matsubara-Heo, Saiei J. [3 ,4 ]
Munch, Henrik J. [1 ,2 ]
Takayama, Nobuki [3 ]
机构
[1] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy
[2] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy
[3] Kobe Univ, Dept Math, Nada Ku, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
[4] Kumamoto Univ, Fac Adv Sci & Technol, Chuo Ku, 2-39-1 Kurokami, Kumamoto 8608555, Japan
关键词
Differential and Algebraic Geometry; Scattering Amplitudes; TWISTED PERIOD RELATIONS; DIFFERENTIAL-EQUATIONS; HYPERGEOMETRIC-FUNCTIONS; MIRROR SYMMETRY; REPRESENTATION; ALGORITHM; SYSTEMS; PARTS; BASES; MAP;
D O I
10.1007/JHEP09(2022)187
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We elaborate on the connection between Gel'fand-Kapranov-Zelevinsky systems, de Rham theory for twisted cohomology groups, and Pfaffian equations for Feynman Integrals. We propose a novel, more efficient algorithm to compute Macaulay matrices, which are used to derive Pfaffian systems of differential equations. The Pfaffian matrices are then employed to obtain linear relations for A-hypergeometric (Euler) integrals and Feynman integrals, through recurrence relations and through projections by intersection numbers.
引用
收藏
页数:57
相关论文
共 50 条