Refined open intersection numbers and the Kontsevich-Penner matrix model

被引:15
|
作者
Alexandrov, Alexander [1 ,2 ,3 ,4 ]
Buryak, Alexandr [5 ]
Tessler, Ran J. [6 ]
机构
[1] Inst for Basic Sci Korea, Ctr Geometry & Phys, Pohang 37673, South Korea
[2] Univ Montreal, CRM, Montreal, PQ, Canada
[3] Concordia Univ, Dept Math & Stat, Montreal, PQ, Canada
[4] ITEP, Moscow, Russia
[5] ETH, Dept Math, Zurich, Switzerland
[6] ETH, Inst Theoret Studies, Zurich, Switzerland
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Differential and Algebraic Geometry; Matrix Models; Topological Strings; Integrable Hierarchies; MODULI SPACE; KDV;
D O I
10.1007/JHEP03(2017)123
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A study of the intersection theory on the moduli space of Riemann surfaces with boundary was recently initiated in a work of R. Pandharipande, J.P. Solomon and the third author, where they introduced open intersection numbers in genus 0. Their construction was later generalized to all genera by J.P. Solomon and the third author. In this paper we consider a refinement of the open intersection numbers by distinguishing contributions from surfaces with different numbers of boundary components, and we calculate all these numbers. We then construct a matrix model for the generating series of the refined open intersection numbers and conjecture that it is equivalent to the Kontsevich-Penner matrix model. An evidence for the conjecture is presented. Another refinement of the open intersection numbers, which describes the distribution of the boundary marked points on the boundary components, is also discussed.
引用
收藏
页数:41
相关论文
共 50 条