Matrix Integrals and Feynman Diagrams in the Kontsevich Model

被引:0
|
作者
Fiorenza, Domenico [1 ]
Murri, Riccardo [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
[2] Scuola Normale Super Pisa, I-56127 Pisa, Italy
关键词
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We review some relations occurring between the combinatorial intersection theory on the moduli spaces of stable curves and the asymptotic behavior of the 't Hooft-Kontsevich matrix integrals. In particular, we give an alternative proof of the Witten-Di Francesco-Itzykson-Zuber theorem -which expresses derivatives of the partition function of intersection numbers as matrix integrals- using techniques based on diagrammatic calculus and combinatorial relations among intersection numbers. These techniques extend to a more general interaction potential.
引用
收藏
页码:525 / 576
页数:52
相关论文
共 50 条
  • [31] FEYNMAN DIAGRAMS WITHOUT FEYNMAN PARAMETERS
    MENDELS, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1978, 45 (01): : 87 - 122
  • [32] Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams
    Cabral-Rosetti, LG
    Sanchis-Lozano, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) : 93 - 99
  • [33] ALGEBRAIC REDUCTION OF FEYNMAN DIAGRAMS TO SCALAR INTEGRALS - A MATHEMATICA IMPLEMENTATION OF LERG-I
    STUART, RG
    COMPUTER PHYSICS COMMUNICATIONS, 1995, 85 (02) : 267 - 277
  • [34] ALGEBRAIC REDUCTION OF ONE-LOOP FEYNMAN DIAGRAMS TO SCALAR INTEGRALS .2.
    STUART, RG
    GONGORA, A
    COMPUTER PHYSICS COMMUNICATIONS, 1990, 56 (03) : 337 - 350
  • [35] GENERALIZED FEYNMAN-INTEGRALS VIA CONDITIONAL FEYNMAN-INTEGRALS
    CHUNG, DM
    PARK, C
    SKOUG, D
    MICHIGAN MATHEMATICAL JOURNAL, 1993, 40 (02) : 377 - 391
  • [36] A Note on BKP for the Kontsevich Matrix Model with Arbitrary Potential
    Borot, Gaetan
    Wulkenhaar, Raimar
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20 : 1 - 16
  • [37] Feynman integrals and motives
    Marcolli, Matilde
    EUROPEAN CONGRESS OF MATHEMATICS 2008, 2010, : 293 - 332
  • [38] Singularities of Feynman integrals
    Pathak, Tanay
    Sreekantan, Ramesh
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024, 233 (11-12): : 2037 - 2055
  • [39] Periods and Feynman integrals
    Bogner, Christian
    Weinzierl, Stefan
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
  • [40] Feynman integrals of Grassmannians
    Feng, Tai-Fu
    Zhang, Hai-Bin
    Chang, Chao-Hsi
    PHYSICAL REVIEW D, 2022, 106 (11)