Matrix Integrals and Feynman Diagrams in the Kontsevich Model

被引:0
|
作者
Fiorenza, Domenico [1 ]
Murri, Riccardo [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
[2] Scuola Normale Super Pisa, I-56127 Pisa, Italy
关键词
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We review some relations occurring between the combinatorial intersection theory on the moduli spaces of stable curves and the asymptotic behavior of the 't Hooft-Kontsevich matrix integrals. In particular, we give an alternative proof of the Witten-Di Francesco-Itzykson-Zuber theorem -which expresses derivatives of the partition function of intersection numbers as matrix integrals- using techniques based on diagrammatic calculus and combinatorial relations among intersection numbers. These techniques extend to a more general interaction potential.
引用
收藏
页码:525 / 576
页数:52
相关论文
共 50 条
  • [41] DECOMPOSITION OF FEYNMAN DIAGRAMS
    CHANG, CK
    GLEESON, AM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (01): : 28 - 28
  • [42] Feynman diagrams of generalized matrix models and the associated manifolds in dimension four
    De Pietri, R
    Petronio, C
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (10) : 6671 - 6688
  • [43] ON THE NUMBER OF FEYNMAN DIAGRAMS
    RIDDELL, RJ
    PHYSICAL REVIEW, 1953, 91 (02): : 461 - 461
  • [44] Feynman path integrals and Lebesgue–Feynman measures
    J. Montaldi
    O. G. Smolyanov
    Doklady Mathematics, 2017, 96 : 368 - 372
  • [45] THE NUMBER OF FEYNMAN DIAGRAMS
    RIDDELL, RJ
    PHYSICAL REVIEW, 1953, 91 (05): : 1243 - 1248
  • [46] REDUCTION OF FEYNMAN DIAGRAMS
    MELROSE, DB
    NUOVO CIMENTO A, 1965, 40 (01): : 181 - +
  • [47] Feynman Diagrams as Models
    Michael Stöltzner
    The Mathematical Intelligencer, 2017, 39 : 46 - 54
  • [48] ON RENORMALIZATION OF FEYNMAN INTEGRALS
    WESTWATE.MJ
    FORTSCHRITTE DER PHYSIK, 1969, 17 (01): : 1 - &
  • [49] Finite Feynman integrals
    Gambuti, Giulio
    Kosower, David A.
    Novichkov, Pavel P.
    Tancredi, Lorenzo
    PHYSICAL REVIEW D, 2024, 110 (11)
  • [50] TikZ-Feynman: Feynman diagrams with TikZ
    Ellis, Joshua P.
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 210 : 103 - 123