GPU-Based Real-Time RGB-D 3D SLAM

被引:0
|
作者
Lee, Donghwa [1 ]
Kim, Hyongjin [1 ]
Myung, Hyun [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Daejeon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Robot Program, Daejeon 305701, South Korea
关键词
3D SLAM; RGB-D camera; image features; projective iterative closest point; 3D-RANSAC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a GPU (graphics processing unit)-based real-time RGB-D (red-green-blue depth) 3D SLAM (simultaneous localization and mapping) system. RGB-D data contain 2D image and per-pixel depth information. First, 6-DOF (degree-of-freedom) visual odometry is obtained through the 3D-RANSAC (three-dimensional random sample consensus) algorithm with image features. And a projective ICP (iterative closest point) algorithm gives an accurate odometry estimation result with depth information. For speed up extraction of features and ICP computation, GPU-based parallel computation is performed. After detecting loop closure, a graph-based SLAM algorithm optimizes trajectory of the sensor and 3D map.
引用
收藏
页码:46 / 48
页数:3
相关论文
共 50 条
  • [1] Image feature-based real-time RGB-D 3D SLAM with GPU acceleration
    Myung, H. (hmyung@kaist.ac.kr), 1600, Institute of Control, Robotics and Systems (19):
  • [2] Real-time GPU-based 3D Deconvolution
    Bruce, Marc A.
    Butte, Manish J.
    OPTICS EXPRESS, 2013, 21 (04): : 4766 - 4773
  • [3] Real-time SLAM algorithm based on RGB-D data
    Fu, Mengyin
    Lü, Xianwei
    Liu, Tong
    Yang, Yi
    Li, Xinghe
    Li, Yu
    Jiqiren/Robot, 2015, 37 (06): : 683 - 692
  • [4] SlamDunk: Affordable Real-Time RGB-D SLAM
    Fioraio, Nicola
    Di Stefano, Luigi
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT I, 2015, 8925 : 401 - 414
  • [5] RGB-D Sensor Based Real-time 6DoF-SLAM
    Chen, Hsi-Yuan
    Lin, Chyi-Yeu
    2014 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND INTELLIGENT SYSTEMS (ARIS 2014), 2014, : 61 - 65
  • [6] Towards Real-time Semantic RGB-D SLAM in Dynamic Environments
    Ji, Tete
    Wang, Chen
    Xie, Lihua
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 11175 - 11181
  • [7] Real-time tracking of 3D elastic objects with an RGB-D sensor
    Petit, Antoine
    Lippiello, Vincenzo
    Siciliano, Bruno
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3914 - 3921
  • [8] GEOMETRICAL 3D RECONSTRUCTION USING REAL-TIME RGB-D CAMERAS
    Penelle, B.
    Schenkel, A.
    Warzee, N.
    INTERNATIONAL CONFERENCE ON 3D IMAGING 2011 (IC3D 2011), 2011,
  • [9] Real-Time Global Registration for Globally Consistent RGB-D SLAM
    Han, Lei
    Xu, Lan
    Bobkov, Dmytro
    Steinbach, Eckehard
    Fang, Lu
    IEEE TRANSACTIONS ON ROBOTICS, 2019, 35 (02) : 498 - 508
  • [10] 3D Planar RGB-D SLAM System
    ElGhor, Hakim ElChaoui
    Roussel, David
    Ababsa, Fakhreddine
    Bouyakhf, El-Houssine
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2016, 2016, 10016 : 486 - 497