GPU-Based Real-Time RGB-D 3D SLAM

被引:0
|
作者
Lee, Donghwa [1 ]
Kim, Hyongjin [1 ]
Myung, Hyun [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Daejeon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Robot Program, Daejeon 305701, South Korea
关键词
3D SLAM; RGB-D camera; image features; projective iterative closest point; 3D-RANSAC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a GPU (graphics processing unit)-based real-time RGB-D (red-green-blue depth) 3D SLAM (simultaneous localization and mapping) system. RGB-D data contain 2D image and per-pixel depth information. First, 6-DOF (degree-of-freedom) visual odometry is obtained through the 3D-RANSAC (three-dimensional random sample consensus) algorithm with image features. And a projective ICP (iterative closest point) algorithm gives an accurate odometry estimation result with depth information. For speed up extraction of features and ICP computation, GPU-based parallel computation is performed. After detecting loop closure, a graph-based SLAM algorithm optimizes trajectory of the sensor and 3D map.
引用
收藏
页码:46 / 48
页数:3
相关论文
共 50 条
  • [21] 3D Visual SLAM using RGB-D Camera
    Krerngkamjornkit, Rapee
    Simic, Milan
    SMART DIGITAL FUTURES 2014, 2014, 262 : 533 - 544
  • [22] Point-line feature fusion based field real-time RGB-D SLAM
    Li, Qingyu
    Wang, Xin
    Wu, Tian
    Yang, Huijun
    COMPUTERS & GRAPHICS-UK, 2022, 107 : 10 - 19
  • [23] Albedo estimation for real-time 3D reconstruction using RGB-D and IR data
    Stotko, Patrick
    Weinmann, Michael
    Klein, Reinhard
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 150 : 213 - 225
  • [24] Real-Time RGB-D Camera Relocalization
    Glocker, Ben
    Izadi, Shahram
    Shotton, Jamie
    Criminisi, Antonio
    2013 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR) - SCIENCE AND TECHNOLOGY, 2013, : 173 - 179
  • [25] REAL-TIME SLAM FROM RGB-D DATA ON A LEGGED ROBOT: AN EXPERIMENTAL STUDY
    Belter, Dominik
    Kostusiak, Aleksander
    Nowicki, Michal
    Skrzypczynski, Piotr
    ADVANCES IN COOPERATIVE ROBOTICS, 2017, : 320 - 328
  • [26] A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM
    Handa, Ankur
    Whelan, Thomas
    McDonald, John
    Davison, Andrew J.
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 1524 - 1531
  • [27] Real-time large-scale dense RGB-D SLAM with volumetric fusion
    Whelan, Thomas
    Kaess, Michael
    Johannsson, Hordur
    Fallon, Maurice
    Leonard, John J.
    McDonald, John
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (4-5): : 598 - 626
  • [28] Benchmarking Implicit Neural Representation and Geometric Rendering in Real-Time RGB-D SLAM
    Hua, Tongyan
    Wang, Lin
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 21346 - 21356
  • [29] A Real-Time Pedestrian Counting System Based on RGB-D
    Yao, Yang
    Zhang, Xu
    Liang, Yu
    Zhang, Xin
    Shen, Furao
    Zhao, Jian
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 110 - 117
  • [30] Real-time motion removal based on point correlations for RGB-D SLAM in indoor dynamic environments
    Kesai Wang
    Xifan Yao
    Nanfeng Ma
    Xuan Jing
    Neural Computing and Applications, 2023, 35 : 8707 - 8722