GPU-Based Real-Time RGB-D 3D SLAM

被引:0
|
作者
Lee, Donghwa [1 ]
Kim, Hyongjin [1 ]
Myung, Hyun [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Daejeon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Robot Program, Daejeon 305701, South Korea
关键词
3D SLAM; RGB-D camera; image features; projective iterative closest point; 3D-RANSAC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a GPU (graphics processing unit)-based real-time RGB-D (red-green-blue depth) 3D SLAM (simultaneous localization and mapping) system. RGB-D data contain 2D image and per-pixel depth information. First, 6-DOF (degree-of-freedom) visual odometry is obtained through the 3D-RANSAC (three-dimensional random sample consensus) algorithm with image features. And a projective ICP (iterative closest point) algorithm gives an accurate odometry estimation result with depth information. For speed up extraction of features and ICP computation, GPU-based parallel computation is performed. After detecting loop closure, a graph-based SLAM algorithm optimizes trajectory of the sensor and 3D map.
引用
收藏
页码:46 / 48
页数:3
相关论文
共 50 条
  • [41] Real-time RGB-D Mapping and 3-D Modeling on the GPU using the Random Ball Cover Data Structure
    Neumann, Dominik
    Lugauer, Felix
    Bauer, Sebastian
    Wasza, Jakob
    Hornegger, Joachim
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCV WORKSHOPS), 2011,
  • [42] The Real-time Segmentation of Indoor Scene Based on RGB-D Sensor
    Du, Chengpeng
    Zeng, Chunnian
    Xu, Fan
    Liang, Hong
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS IEEE-ROBIO 2014, 2014, : 677 - 682
  • [43] Real-Time GPU-Based Image Processing for a 3-D THz Radar
    Garcia-Rial, Federico
    Ubeda-Medina, Luis
    Grajal, Jesus
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2017, 28 (10) : 2953 - 2964
  • [44] RGB-D Fusion: Real-time Robust Tracking and Dense Mapping with RGB-D Data Fusion
    Lee, Seong-Oh
    Lim, Hwasup
    Kim, Hyoung-Gon
    Ahn, Sang Chul
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 2749 - 2754
  • [45] Real-Time RGB-D based Template Matching Pedestrian Detection
    Jafari, Omid Hosseini
    Yang, Michael Ying
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 5520 - 5527
  • [46] REAL-TIME ACCURATE CROWD COUNTING BASED ON RGB-D INFORMATION
    Fu, Huiyuan
    Ma, Huadong
    Xiao, Hongtian
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 2685 - 2688
  • [47] Real-Time Moving Objects Segmentation based on RGB-D camera
    Zhu, Rui
    Zhao, Yongjia
    2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [48] RGB-D SLAM综述
    王旒军
    陈家斌
    余欢
    朱汇申
    导航定位与授时, 2017, 4 (06) : 9 - 18
  • [49] SDF-2-SDF Registration for Real-Time 3D Reconstruction from RGB-D Data
    Miroslava Slavcheva
    Wadim Kehl
    Nassir Navab
    Slobodan Ilic
    International Journal of Computer Vision, 2018, 126 : 615 - 636
  • [50] SDF-2-SDF Registration for Real-Time 3D Reconstruction from RGB-D Data
    Slavcheva, Miroslava
    Kehl, Wadim
    Navab, Nassir
    Ilic, Slobodan
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2018, 126 (06) : 615 - 636