A two-grid immersed finite element method with the Crank-Nicolson time scheme for semilinear parabolic interface problems

被引:5
|
作者
Yi, Huaming [1 ]
Chen, Yanping [2 ]
Wang, Yang [3 ]
Huang, Yunqing [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[3] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Peoples R China
基金
中国国家自然科学基金;
关键词
Two -grid method; Immersed finite element; Parabolic interface problem; Crank-Nicolson scheme; MISCIBLE DISPLACEMENT PROBLEMS; LOCALIZED ADJOINT METHOD; COUPLING FLUID-FLOW; POROUS-MEDIA; ELECTROMAGNETIC-WAVES; DIFFUSION-EQUATIONS; APPROXIMATION; CONVERGENCE; MODEL; FEM;
D O I
10.1016/j.apnum.2023.03.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose and analyze a new two-grid partially penalized immersed finite element method for solving the semilinear parabolic interface problems with meshes independent of the coefficient discontinuity. Based on the corresponding time-discrete system, we can unconditionally derive the optimal error estimates in both the L2 norm and semi-H1 norm, while previous works always require the coupling condition of time step and space size (e.g. condition & tau; = O(H)). Then, we design a two-grid algorithm based on Newton iteration to deal with nonlinear source term. It is shown, both theoretically and numerically, that the algorithm can achieve asymptotically optimal approximation in L2 norm (or semi-H1 norm) when the mesh size satisfies H = O(h3/2) (or H = O(h3)). & COPY; 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [31] A Family of Two-Grid Partially Penalized Immersed Finite Element Methods for Semi-linear Parabolic Interface Problems
    Wang, Yang
    Chen, Yanping
    Huang, Yunqing
    Yi, Huaming
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (03)
  • [32] A Family of Two-Grid Partially Penalized Immersed Finite Element Methods for Semi-linear Parabolic Interface Problems
    Yang Wang
    Yanping Chen
    Yunqing Huang
    Huaming Yi
    Journal of Scientific Computing, 2021, 88
  • [33] A parallel Crank-Nicolson finite difference method for time-fractional parabolic equation
    Sweilam, N. H.
    Moharram, H.
    Moniem, N. K. Abdel
    Ahmed, S.
    JOURNAL OF NUMERICAL MATHEMATICS, 2014, 22 (04) : 363 - 382
  • [34] A new mixed finite element method based on the Crank-Nicolson scheme for Burgers’ equation
    Xiaohui Hu
    Pengzhan Huang
    Xinlong Feng
    Applications of Mathematics, 2016, 61 : 27 - 45
  • [35] A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation
    Hu, Xiaohui
    Huang, Pengzhan
    Feng, Xinlong
    APPLICATIONS OF MATHEMATICS, 2016, 61 (01) : 27 - 45
  • [36] SUPERCLOSE ANALYSIS OF A TWO-GRID FINITE ELEMENT SCHEME FOR SEMILINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
    Xu, Changling
    Hou, Tianliang
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 897 - 910
  • [37] An Efficient Algorithm for Implementing the Crank-Nicolson Scheme in the Mixed Finite-Element Time-Domain Method
    Chen, Ru-Shan
    Du, Lei
    Ye, Zhenbao
    Yang, Yang
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (10) : 3216 - 3222
  • [38] A Crank-Nicolson finite volume element method for two-dimensional Sobolev equations
    Zhendong Luo
    Journal of Inequalities and Applications, 2016
  • [39] A Crank-Nicolson finite volume element method for two-dimensional Sobolev equations
    Luo, Zhendong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [40] A new Crank-Nicolson finite element method for the time-fractional subdiffusion equation
    Zeng, Fanhai
    Li, Changpin
    APPLIED NUMERICAL MATHEMATICS, 2017, 121 : 82 - 95