A two-grid immersed finite element method with the Crank-Nicolson time scheme for semilinear parabolic interface problems

被引:5
|
作者
Yi, Huaming [1 ]
Chen, Yanping [2 ]
Wang, Yang [3 ]
Huang, Yunqing [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[3] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Peoples R China
基金
中国国家自然科学基金;
关键词
Two -grid method; Immersed finite element; Parabolic interface problem; Crank-Nicolson scheme; MISCIBLE DISPLACEMENT PROBLEMS; LOCALIZED ADJOINT METHOD; COUPLING FLUID-FLOW; POROUS-MEDIA; ELECTROMAGNETIC-WAVES; DIFFUSION-EQUATIONS; APPROXIMATION; CONVERGENCE; MODEL; FEM;
D O I
10.1016/j.apnum.2023.03.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose and analyze a new two-grid partially penalized immersed finite element method for solving the semilinear parabolic interface problems with meshes independent of the coefficient discontinuity. Based on the corresponding time-discrete system, we can unconditionally derive the optimal error estimates in both the L2 norm and semi-H1 norm, while previous works always require the coupling condition of time step and space size (e.g. condition & tau; = O(H)). Then, we design a two-grid algorithm based on Newton iteration to deal with nonlinear source term. It is shown, both theoretically and numerically, that the algorithm can achieve asymptotically optimal approximation in L2 norm (or semi-H1 norm) when the mesh size satisfies H = O(h3/2) (or H = O(h3)). & COPY; 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [21] Stability and convergence of two-grid Crank-Nicolson extrapolation scheme for the time-dependent natural convection equations
    Liang, Hongxia
    Zhang, Tong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6165 - 6191
  • [22] Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems
    Kim, Dongho
    Park, Eun-Jae
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 10 (04): : 873 - 886
  • [23] A novel two-grid Crank-Nicolson mixed finite element method for nonlinear fourth-order sin-Gordon equation
    Zhou, Yanjie
    Leng, Xianxiang
    Li, Yuejie
    Deng, Qiuxiang
    Luo, Zhendong
    AIMS MATHEMATICS, 2024, 9 (11): : 31470 - 31494
  • [24] Immersed finite element approximation for semi-linear parabolic interface problems combining with two-grid methods
    Chen, Yanping
    Yi, Huaming
    Wang, Yang
    Huang, Yunqing
    APPLIED NUMERICAL MATHEMATICS, 2022, 175 : 56 - 72
  • [25] Stabilized multiphysics finite element method with Crank-Nicolson scheme for a poroelasticity model
    Ge, Zhihao
    He, Yanan
    Li, Tingting
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (04) : 1412 - 1428
  • [26] A NEW ERROR ESTIMATE FOR A FULLY FINITE ELEMENT DISCRETIZATION SCHEME FOR PARABOLIC EQUATIONS USING CRANK-NICOLSON METHOD
    Bradji, Abdallah
    Fuhrmann, Juergen
    MATHEMATICA BOHEMICA, 2014, 139 (02): : 113 - 124
  • [27] Two-grid scheme of expanded mixed finite element method for semilinear parabolic integro-differential equations
    Hou, Tianliang
    Jiang, Wenzhu
    Chen, Luoping
    APPLICABLE ANALYSIS, 2022, 101 (08) : 3017 - 3038
  • [28] Error estimates of mixed finite elements combined with Crank-Nicolson scheme for parabolic control problems
    Tang, Yuelong
    AIMS MATHEMATICS, 2023, 8 (05): : 12506 - 12519
  • [29] A stabilized finite element method for the time-dependent Stokes equations based on Crank-Nicolson Scheme
    Huang, Pengzhan
    Feng, Xinlong
    Liu, Demin
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (04) : 1910 - 1919
  • [30] A New Reduced-Dimension Iteration Two-Grid Crank-Nicolson Finite-Element Method for Unsaturated Soil Water Flow Problem
    Hou, Xiaoli
    Teng, Fei
    Luo, Zhendong
    Fu, Hui
    MATHEMATICS, 2024, 12 (11)