A two-grid immersed finite element method with the Crank-Nicolson time scheme for semilinear parabolic interface problems

被引:5
|
作者
Yi, Huaming [1 ]
Chen, Yanping [2 ]
Wang, Yang [3 ]
Huang, Yunqing [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[3] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Peoples R China
基金
中国国家自然科学基金;
关键词
Two -grid method; Immersed finite element; Parabolic interface problem; Crank-Nicolson scheme; MISCIBLE DISPLACEMENT PROBLEMS; LOCALIZED ADJOINT METHOD; COUPLING FLUID-FLOW; POROUS-MEDIA; ELECTROMAGNETIC-WAVES; DIFFUSION-EQUATIONS; APPROXIMATION; CONVERGENCE; MODEL; FEM;
D O I
10.1016/j.apnum.2023.03.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose and analyze a new two-grid partially penalized immersed finite element method for solving the semilinear parabolic interface problems with meshes independent of the coefficient discontinuity. Based on the corresponding time-discrete system, we can unconditionally derive the optimal error estimates in both the L2 norm and semi-H1 norm, while previous works always require the coupling condition of time step and space size (e.g. condition & tau; = O(H)). Then, we design a two-grid algorithm based on Newton iteration to deal with nonlinear source term. It is shown, both theoretically and numerically, that the algorithm can achieve asymptotically optimal approximation in L2 norm (or semi-H1 norm) when the mesh size satisfies H = O(h3/2) (or H = O(h3)). & COPY; 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [41] Two-grid methods for semilinear interface problems
    Holst, Michael
    Szypowski, Ryan
    Zhu, Yunrong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (05) : 1729 - 1748
  • [42] A Posteriori Error Analysis of the Crank-Nicolson Finite Element Method for Parabolic Integro-Differential Equations
    Reddy, G. Murali Mohan
    Sinha, Rajen Kumar
    Cuminato, Jose Alberto
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) : 414 - 441
  • [43] AN EXTRAPOLATED CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS
    Ohm, Mi Ray
    Shin, Jun Yong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) : 1409 - 1419
  • [44] An ADI Crank-Nicolson orthogonal spline collocation method for 2D parabolic problems with an interface
    Bhal, Santosh Kumar
    Danumjaya, P.
    Fairweather, G.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 160 : 142 - 147
  • [45] A TWO-GRID MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD FOR NONLINEAR PARABOLIC PROBLEMS
    Xu, Wenwen
    Li, Xindong
    Song, Nana
    Yang, Lu
    Yuan, Xiqian
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (03): : 1310 - 1329
  • [46] A two-grid method for semi-linear elliptic interface problems by partially penalized immersed finite element methods
    Wang, Yang
    Chen, Yanping
    Huang, Yunqing
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 169 (169) : 1 - 15
  • [47] The compact and Crank-Nicolson ADI schemes for two-dimensional semilinear multidelay parabolic equations
    Zhang, Qifeng
    Zhang, Chengjian
    Wang, Li
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 306 : 217 - 230
  • [48] Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods
    Yang Wang
    Yanping Chen
    Yunqing Huang
    Ying Liu
    Applied Mathematics and Mechanics, 2019, 40 : 1657 - 1676
  • [49] Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods
    Wang, Yang
    Chen, Yanping
    Huang, Yunqing
    Liu, Ying
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2019, 40 (11) : 1657 - 1676
  • [50] Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods
    Yang WANG
    Yanping CHEN
    Yunqing HUANG
    Ying LIU
    Applied Mathematics and Mechanics(English Edition), 2019, 40 (11) : 1657 - 1676