The diameter and eccentricity eigenvalues of graphs

被引:1
|
作者
Chen, Yunzhe [1 ]
Wang, Jianfeng [1 ]
Wang, Jing [2 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Peoples R China
[2] Hebei Normal Univ Sci & Technol, Sch Math & Informat Sci & Technol, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Eccentricity matrix; diameter; interlacing theorem; eigenvalue; MATRIX; SPECTRA;
D O I
10.1142/S1793830922501828
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eccentricity matrix epsilon(G) = (epsilon(uv)) of a graph G is constructed from the distance matrix by keeping each row and each column only the largest distances with epsilon(uv) = {d(u, v), if d(u, v) = min{epsilon(u), epsilon(v)}, 0, otherwise, where d(u, v) is the distance between two vertices u and v, and epsilon(u) = max{d(u, v) vertical bar v is an element of V (G)} is the eccentricity of the vertex u. The epsilon-eigenvalues of G are those of its eccentricity matrix. In this paper, employing the well-known Cauchy Interlacing Theorem we give the following lower bounds for the second, the third and the fourth largest E-eigenvalues by means of the diameter d of G: xi(2)(G) >= {-1, if d <= 2; alpha d, if d >= 3, xi(3)(G) >=-d, and xi(4)(G) >= -1-root 5/2 d, where alpha = 0.3111+ is the second largest root of x(3) - x(2) - 3x + 1 = 0. Moreover, we further discuss the graphs achieving the above lower bounds.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] EIGENVALUES OF MOLECULAR GRAPHS
    HALL, GG
    MOLECULAR PHYSICS, 1977, 33 (02) : 551 - 557
  • [42] EIGENVALUES OF FINITE GRAPHS
    DELORME, C
    DISCRETE MATHEMATICS, 1993, 114 (1-3) : 137 - 146
  • [43] Coronae Graphs and Their α-Eigenvalues
    Tahir, Muhammad Ateeq
    Zhang, Xiao-Dong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (04) : 2911 - 2927
  • [44] The closeness eigenvalues of graphs
    Lu Zheng
    Bo Zhou
    Journal of Algebraic Combinatorics, 2023, 58 : 741 - 760
  • [45] EIGENVALUES AND SEPARATION IN GRAPHS
    MILLER, Z
    PRITIKIN, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 181 : 187 - 219
  • [46] ON THE EIGENVALUES OF FIREFLY GRAPHS
    Hong, W. X.
    You, L. H.
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (03) : 1 - 9
  • [47] Eigenvalues and triangles in graphs
    Lin, Huiqiu
    Ning, Bo
    Wu, Baoyindureng
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 258 - 270
  • [48] On the distribution of eigenvalues of graphs
    Kelmans, A
    Yong, XR
    DISCRETE MATHEMATICS, 1999, 199 (1-3) : 251 - 258
  • [49] On the distribution of eigenvalues of graphs
    Discrete Math, 1-3 (251-258):
  • [50] INTERLACING EIGENVALUES AND GRAPHS
    HAEMERS, WH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 226 : 593 - 616