The diameter and eccentricity eigenvalues of graphs

被引:1
|
作者
Chen, Yunzhe [1 ]
Wang, Jianfeng [1 ]
Wang, Jing [2 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Peoples R China
[2] Hebei Normal Univ Sci & Technol, Sch Math & Informat Sci & Technol, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Eccentricity matrix; diameter; interlacing theorem; eigenvalue; MATRIX; SPECTRA;
D O I
10.1142/S1793830922501828
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eccentricity matrix epsilon(G) = (epsilon(uv)) of a graph G is constructed from the distance matrix by keeping each row and each column only the largest distances with epsilon(uv) = {d(u, v), if d(u, v) = min{epsilon(u), epsilon(v)}, 0, otherwise, where d(u, v) is the distance between two vertices u and v, and epsilon(u) = max{d(u, v) vertical bar v is an element of V (G)} is the eccentricity of the vertex u. The epsilon-eigenvalues of G are those of its eccentricity matrix. In this paper, employing the well-known Cauchy Interlacing Theorem we give the following lower bounds for the second, the third and the fourth largest E-eigenvalues by means of the diameter d of G: xi(2)(G) >= {-1, if d <= 2; alpha d, if d >= 3, xi(3)(G) >=-d, and xi(4)(G) >= -1-root 5/2 d, where alpha = 0.3111+ is the second largest root of x(3) - x(2) - 3x + 1 = 0. Moreover, we further discuss the graphs achieving the above lower bounds.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] On Connective Eccentricity Index of Graphs
    Yu, Guihai
    Feng, Lihua
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 69 (03) : 611 - 628
  • [22] Spectra of eccentricity matrices of graphs
    Mahato, Iswar
    Gurusamy, R.
    Kannan, M. Rajesh
    Arockiaraj, S.
    DISCRETE APPLIED MATHEMATICS, 2020, 285 : 252 - 260
  • [23] On graphs with three eigenvalues
    Muzychuk, M
    Klin, M
    DISCRETE MATHEMATICS, 1998, 189 (1-3) : 191 - 207
  • [24] On the eccentricity spectra of threshold graphs
    Qiu, Zhengping
    Tang, Zikai
    DISCRETE APPLIED MATHEMATICS, 2022, 310 : 75 - 85
  • [25] BOUNDS OF EIGENVALUES OF GRAPHS
    HONG, Y
    DISCRETE MATHEMATICS, 1993, 123 (1-3) : 65 - 74
  • [26] THE MULTIPLICITY OF Aα-EIGENVALUES OF GRAPHS
    Xue, Jie
    Liu, Ruifang
    Yu, Guanglong
    Shu, Jinlong
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36 : 645 - 657
  • [27] Eigenvalues, multiplicities and graphs
    Johnson, Charles R.
    Duarte, Antonio Leal
    Saiago, Carlos M.
    Sher, David
    ALGEBRA AND ITS APPLICATIONS, 2006, 419 : 167 - +
  • [28] Complementary eigenvalues of graphs
    Fernandes, Rafael
    Judice, Joaquim
    Trevisan, Vilmar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 527 : 216 - 231
  • [29] On the largest and least eigenvalues of eccentricity matrix of trees
    He, Xiaocong
    Lu, Lu
    DISCRETE MATHEMATICS, 2022, 345 (01)
  • [30] Bounding the Diameter and Eigenvalues of Amply Regular Graphs via Lin-Lu-Yau Curvature
    Huang, Xueping
    Liu, Shiping
    Xia, Qing
    COMBINATORICA, 2024, 44 (06) : 1177 - 1192