The diameter and eccentricity eigenvalues of graphs

被引:1
|
作者
Chen, Yunzhe [1 ]
Wang, Jianfeng [1 ]
Wang, Jing [2 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Peoples R China
[2] Hebei Normal Univ Sci & Technol, Sch Math & Informat Sci & Technol, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Eccentricity matrix; diameter; interlacing theorem; eigenvalue; MATRIX; SPECTRA;
D O I
10.1142/S1793830922501828
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eccentricity matrix epsilon(G) = (epsilon(uv)) of a graph G is constructed from the distance matrix by keeping each row and each column only the largest distances with epsilon(uv) = {d(u, v), if d(u, v) = min{epsilon(u), epsilon(v)}, 0, otherwise, where d(u, v) is the distance between two vertices u and v, and epsilon(u) = max{d(u, v) vertical bar v is an element of V (G)} is the eccentricity of the vertex u. The epsilon-eigenvalues of G are those of its eccentricity matrix. In this paper, employing the well-known Cauchy Interlacing Theorem we give the following lower bounds for the second, the third and the fourth largest E-eigenvalues by means of the diameter d of G: xi(2)(G) >= {-1, if d <= 2; alpha d, if d >= 3, xi(3)(G) >=-d, and xi(4)(G) >= -1-root 5/2 d, where alpha = 0.3111+ is the second largest root of x(3) - x(2) - 3x + 1 = 0. Moreover, we further discuss the graphs achieving the above lower bounds.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] On the Eccentricity Function in Graphs
    Alrasheed, Hend
    COMPLEX NETWORKS IX, 2018, : 3 - 13
  • [12] On Average Eccentricity of Graphs
    Kinkar Ch. Das
    A. Dilek Maden
    I. Naci Cangül
    A. Sinan Çevik
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2017, 87 : 23 - 30
  • [13] On Average Eccentricity of Graphs
    Das, Kinkar Ch.
    Maden, A. Dilek
    Cangul, I. Naci
    Cevik, A. Sinan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2017, 87 (01) : 23 - 30
  • [14] Path eccentricity of graphs
    Gomez, Renzo
    Gutierrez, Juan
    DISCRETE APPLIED MATHEMATICS, 2023, 337 : 1 - 13
  • [15] On the eigenvalues and Seidel eigenvalues of chain graphs
    Xiong, Zhuang
    Hou, Yaoping
    DISCRETE APPLIED MATHEMATICS, 2024, 351 : 44 - 53
  • [16] On the embedding of graphs into graphs with few eigenvalues
    Vu, VH
    JOURNAL OF GRAPH THEORY, 1996, 22 (02) : 137 - 149
  • [17] Eccentricity terrain of δ-hyperbolic graphs
    Dragan, Feodor F.
    Guarnera, Heather M.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2020, 112 : 50 - 65
  • [18] The Average Eccentricity of Sierpinski Graphs
    Hinz, Andreas M.
    Parisse, Daniele
    GRAPHS AND COMBINATORICS, 2012, 28 (05) : 671 - 686
  • [19] On 6-eccentricity in graphs
    Kathiresan, K.M.
    Marimuthu, G.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2009, 69 : 89 - 94
  • [20] On the least eccentricity eigenvalue of graphs
    Li, Jianping
    Qiu, Leshi
    Zhang, Jianbin
    DISCRETE APPLIED MATHEMATICS, 2023, 336 : 47 - 55