The diameter and eccentricity eigenvalues of graphs

被引:1
|
作者
Chen, Yunzhe [1 ]
Wang, Jianfeng [1 ]
Wang, Jing [2 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Peoples R China
[2] Hebei Normal Univ Sci & Technol, Sch Math & Informat Sci & Technol, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Eccentricity matrix; diameter; interlacing theorem; eigenvalue; MATRIX; SPECTRA;
D O I
10.1142/S1793830922501828
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eccentricity matrix epsilon(G) = (epsilon(uv)) of a graph G is constructed from the distance matrix by keeping each row and each column only the largest distances with epsilon(uv) = {d(u, v), if d(u, v) = min{epsilon(u), epsilon(v)}, 0, otherwise, where d(u, v) is the distance between two vertices u and v, and epsilon(u) = max{d(u, v) vertical bar v is an element of V (G)} is the eccentricity of the vertex u. The epsilon-eigenvalues of G are those of its eccentricity matrix. In this paper, employing the well-known Cauchy Interlacing Theorem we give the following lower bounds for the second, the third and the fourth largest E-eigenvalues by means of the diameter d of G: xi(2)(G) >= {-1, if d <= 2; alpha d, if d >= 3, xi(3)(G) >=-d, and xi(4)(G) >= -1-root 5/2 d, where alpha = 0.3111+ is the second largest root of x(3) - x(2) - 3x + 1 = 0. Moreover, we further discuss the graphs achieving the above lower bounds.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] On eccentricity matrices of wheel graphs
    Jeyaraman, I.
    Divyadevi, T.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [32] Stability of the eigenvalues of graphs
    Zhu, P
    Wilson, RC
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2005, 3691 : 371 - 378
  • [33] On the Aα-Eigenvalues of Signed Graphs
    Pasten, Germain
    Rojo, Oscar
    Medina, Luis
    MATHEMATICS, 2021, 9 (16)
  • [34] BOUNDING THE DIAMETER AND EIGENVALUES OF AMPLY REGULAR GRAPHS VIA LIN-LU-YAU CURVATURE
    Huang, Xueping
    Liu, Shiping
    Xia, Qing
    arXiv, 2022,
  • [35] EIGENVALUES OF GRAPHS AND DIGRAPHS
    GODSIL, CD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 46 (AUG) : 43 - 50
  • [36] ON EIGENVALUES AND EIGENVECTORS OF GRAPHS
    LEE, SL
    YEH, YN
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1993, 12 (1-4) : 121 - 135
  • [37] On graphs with multiple eigenvalues
    Rowlinson, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 283 (1-3) : 75 - 85
  • [38] A note on the eigenvalues of graphs
    Feng, Lihua
    Yu, Guihai
    ARS COMBINATORIA, 2010, 94 : 221 - 227
  • [39] On graphs with maximum average eccentricity
    Horoldagva, Batmend
    Buyantogtokh, Lkhagva
    Dorjsembe, Shiikhar
    Azjargal, Enkhbayar
    Adiyanyam, Damchaa
    DISCRETE APPLIED MATHEMATICS, 2021, 301 (301) : 109 - 117
  • [40] ON ECCENTRICITY SEQUENCES OF CONNECTED GRAPHS
    Ferrero, Daniela
    Harary, Frank
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2009, 6 (03) : 401 - 408