The diameter and eccentricity eigenvalues of graphs

被引:1
|
作者
Chen, Yunzhe [1 ]
Wang, Jianfeng [1 ]
Wang, Jing [2 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Peoples R China
[2] Hebei Normal Univ Sci & Technol, Sch Math & Informat Sci & Technol, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Eccentricity matrix; diameter; interlacing theorem; eigenvalue; MATRIX; SPECTRA;
D O I
10.1142/S1793830922501828
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eccentricity matrix epsilon(G) = (epsilon(uv)) of a graph G is constructed from the distance matrix by keeping each row and each column only the largest distances with epsilon(uv) = {d(u, v), if d(u, v) = min{epsilon(u), epsilon(v)}, 0, otherwise, where d(u, v) is the distance between two vertices u and v, and epsilon(u) = max{d(u, v) vertical bar v is an element of V (G)} is the eccentricity of the vertex u. The epsilon-eigenvalues of G are those of its eccentricity matrix. In this paper, employing the well-known Cauchy Interlacing Theorem we give the following lower bounds for the second, the third and the fourth largest E-eigenvalues by means of the diameter d of G: xi(2)(G) >= {-1, if d <= 2; alpha d, if d >= 3, xi(3)(G) >=-d, and xi(4)(G) >= -1-root 5/2 d, where alpha = 0.3111+ is the second largest root of x(3) - x(2) - 3x + 1 = 0. Moreover, we further discuss the graphs achieving the above lower bounds.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On the eigenvalues of eccentricity matrix of graphs
    Lei, Xingyu
    Wang, Jianfeng
    Li, Guozheng
    DISCRETE APPLIED MATHEMATICS, 2021, 295 : 134 - 147
  • [2] Generalized eccentricity, radius, and diameter in graphs
    Dankelmann, P
    Goddard, W
    Henning, MA
    Swart, HC
    NETWORKS, 1999, 34 (04) : 312 - 319
  • [3] On the eccentricity energy and eccentricity spectral radius of graphs with odd diameter
    Qiu, Leshi
    Li, Jianping
    Zhang, Jianbin
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (06) : 3141 - 3156
  • [4] The diameter and Laplacian eigenvalues of directed graphs
    Chung, F
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [5] EIGENVALUES, DIAMETER, AND MEAN DISTANCE IN GRAPHS
    MOHAR, B
    GRAPHS AND COMBINATORICS, 1991, 7 (01) : 53 - 64
  • [6] On the connective eccentricity index of trees and unicyclic graphs with given diameter
    Yu, Guihai
    Qu, Hui
    Tang, Lang
    Feng, Lihua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (02) : 1776 - 1786
  • [7] FAMILIES OF GRAPHS HAVING FEW DISTINCT DISTANCE EIGENVALUES WITH ARBITRARY DIAMETER
    Atik, Fouzul
    Panigrahi, Pratima
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 29 : 194 - 205
  • [8] Minimizing the second Zagreb eccentricity index in bipartite graphs with a fixed size and diameter
    Hayat, Fazal
    Xu, Shou-Jun
    Qi, Xuli
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (05) : 5049 - 5061
  • [9] Eigenvalues and diameter
    Liu, Hui Qing
    Lu, Mei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (06) : 1107 - 1114
  • [10] Eigenvalues and diameter
    Hui Qing Liu
    Mei Lu
    Acta Mathematica Sinica, English Series, 2011, 27 : 1107 - 1114