An Application of BMO-type Space to Chemotaxis-fluid Equations

被引:4
|
作者
Yang, Ming Hua [1 ]
Zi, Yu Mei [2 ]
Fu, Zun Wei [2 ,3 ]
机构
[1] Jiangxi Univ Finance & Econ, Dept Math, Nanchang 330032, Peoples R China
[2] Linyi Univ, Dept Math, Linyi 276005, Peoples R China
[3] Univ Suwon, Coll Informat Technol, 743 Bongdameup, Hwaseong 445743, Gyeonggi Do, South Korea
关键词
BMO-type space; Fourier transform; Besov space; Keller-Segel equation; Navier-Stokes equation; NAVIER-STOKES EQUATIONS; KELLER-SEGEL SYSTEM; GLOBAL EXISTENCE; WELL-POSEDNESS; ASYMPTOTIC-BEHAVIOR; MILD SOLUTIONS; MORREY SPACES; INITIAL DATA; UNIQUENESS;
D O I
10.1007/s10114-023-1514-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Keller-Segel model coupled to the incompressible Navier-Stokes system in 3-dimensional case. We prove that the system has a unique local solution when (u(0), n(0), c(0)) is an element of Phi(1)(01) x Phi(2)(01) x Phi(3)(01) x where Phi(1)(01) x Phi(2)(01) x Phi(3)(01) is a subspace of bmo(-1)(R-3)x(B) over dot(p,infinity)(-2+3/p) (R-3)x((B) over dot(p,infinity)(3/q) (R-3)boolean AND L-infinity (R-3)). Furthermore, we obtain that the system exists a unique global solution for any small initial data (u(0), n(0), c(0)) is an element of BMO-1(R-3) x . (B) over dot(p,infinity)(2+3/p) (R-3) x ((B) over dot(p,infinity)(3/q)(R-3) boolean AND L-infinity (R-3)). For the difference between these spaces and known ones, our results may be regarded as a new existence theorem on the system.
引用
收藏
页码:1650 / 1666
页数:17
相关论文
共 50 条
  • [31] Equivalence of BMO-type Norms with Applications to the Heat and Stokes Semigroups
    Bolkart, Martin
    Giga, Yoshikazu
    Suzuki, Takuya
    Tsutsui, Yohei
    POTENTIAL ANALYSIS, 2018, 49 (01) : 105 - 130
  • [32] Equivalence of BMO-type Norms with Applications to the Heat and Stokes Semigroups
    Martin Bolkart
    Yoshikazu Giga
    Takuya Suzuki
    Yohei Tsutsui
    Potential Analysis, 2018, 49 : 105 - 130
  • [33] On BMO-type characteristics for one class of holomorphic functions in a disk
    Shamoyan, RF
    SIBERIAN MATHEMATICAL JOURNAL, 2003, 44 (03) : 539 - 560
  • [34] Global Existence for an Attraction–Repulsion Chemotaxis-Fluid System in a Framework of Besov–Morrey type
    Abelardo Duarte-Rodríguez
    Lucas C. F. Ferreira
    Élder J. Villamizar-Roa
    Journal of Mathematical Fluid Mechanics, 2020, 22
  • [35] Temporal decay in negative Besov spaces for the 3D coupled chemotaxis-fluid equations
    Zhao, Jihong
    Zhou, Jianjun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 42 : 160 - 179
  • [36] Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces
    Yang, Minghua
    Fu, Zunwei
    Sun, Jinyi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (09) : 5867 - 5894
  • [37] ON A DISTRIBUTED CONTROL PROBLEM FOR A COUPLED CHEMOTAXIS-FLUID MODEL
    Angeles Rodriguez-Bellido, M.
    Rueda-Gomez, Diego A.
    Villamizar-Roa, Elder J.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (02): : 557 - 571
  • [38] On BMO-Type Characteristics for One Class of Holomorphic Functions in a Disk
    R. F. Shamoyan
    Siberian Mathematical Journal, 2003, 44 : 539 - 560
  • [39] Functional Calculus on BMO-type Spaces of Bourgain, Brezis and Mironescu
    Liu, Liguang
    Yang, Dachun
    Yuan, Wen
    TOKYO JOURNAL OF MATHEMATICS, 2021, 44 (02) : 323 - 349
  • [40] Regularity criterion in terms of BMO-type norm of the pressure gradient for the Navier-Stokes equations on unbounded domains
    Hirata, Daisuke
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 521 (01)