ON A DISTRIBUTED CONTROL PROBLEM FOR A COUPLED CHEMOTAXIS-FLUID MODEL

被引:14
|
作者
Angeles Rodriguez-Bellido, M. [1 ,2 ]
Rueda-Gomez, Diego A. [3 ]
Villamizar-Roa, Elder J. [3 ]
机构
[1] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, C Tarfia S-N, E-41012 Seville, Spain
[2] Univ Seville, IMUS, C Tarfia S-N, E-41012 Seville, Spain
[3] Univ Ind Santander, Escuela Matemat, Bucaramanga 678, Colombia
来源
关键词
Chemotaxis; Navier-Stokes equations; Patlak-Keller-Segel model; distributed control; KELLER-SEGEL SYSTEM; STATIONARY SOLUTIONS; GLOBAL EXISTENCE; CONTROLLABILITY RESULT; BOUNDARY CONTROL; STEADY-STATES; DIFFUSION; ANGIOGENESIS; PATTERNS; FLOW;
D O I
10.3934/dcdsb.2017208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze an optimal distributed control problem where the state equations are given by a stationary chemotaxis model coupled with the Navier-Stokes equations. We consider that the movement and the interaction of cells are occurring in a smooth bounded domain of R-n; n = 2; 3; subject to homogeneous boundary conditions. We control the system through a distributed force and a coefficient of chemotactic sensitivity, leading the chemical concentration, the cell density, and the velocity field towards a given target concentration, density and velocity, respectively. In addition to the existence of optimal solution, we derive some optimality conditions.
引用
收藏
页码:557 / 571
页数:15
相关论文
共 50 条
  • [1] A coupled chemotaxis-fluid model: Global existence
    Liu, Jian-Guo
    Lorz, Alexander
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (05): : 643 - 652
  • [2] Global Dynamics of a Coupled Chemotaxis-Fluid Model on Bounded Domains
    Jishan Fan
    Kun Zhao
    Journal of Mathematical Fluid Mechanics, 2014, 16 : 351 - 364
  • [3] Global Dynamics of a Coupled Chemotaxis-Fluid Model on Bounded Domains
    Fan, Jishan
    Zhao, Kun
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (02) : 351 - 364
  • [4] Global Solutions to the Coupled Chemotaxis-Fluid Equations
    Duan, Renjun
    Lorz, Alexander
    Markowich, Peter
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) : 1635 - 1673
  • [5] OPTIMAL CONTROL FOR THE COUPLED CHEMOTAXIS-FLUID MODELS IN TWO SPACE DIMENSIONS
    Yuan, Yunfei
    Liu, Changchun
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 4269 - 4296
  • [6] Global Strong Solutions to a Coupled Chemotaxis-Fluid Model with Subcritical Sensitivity
    Fan, Jishan
    Li, Fucai
    ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 767 - 791
  • [7] A controllability result for a chemotaxis-fluid model
    Chaves-Silva, F. W.
    Guerrero, S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (09) : 4863 - 4905
  • [8] Existence and decay of global smooth solutions to the coupled chemotaxis-fluid model
    Ye, Xia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (01) : 60 - 73
  • [9] Global Strong Solutions to a Coupled Chemotaxis-Fluid Model with Subcritical Sensitivity
    Jishan Fan
    Fucai Li
    Acta Applicandae Mathematicae, 2020, 169 : 767 - 791
  • [10] EXISTENCE OF SMOOTH SOLUTIONS TO COUPLED CHEMOTAXIS-FLUID EQUATIONS
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) : 2271 - 2297