ON A DISTRIBUTED CONTROL PROBLEM FOR A COUPLED CHEMOTAXIS-FLUID MODEL

被引:14
|
作者
Angeles Rodriguez-Bellido, M. [1 ,2 ]
Rueda-Gomez, Diego A. [3 ]
Villamizar-Roa, Elder J. [3 ]
机构
[1] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, C Tarfia S-N, E-41012 Seville, Spain
[2] Univ Seville, IMUS, C Tarfia S-N, E-41012 Seville, Spain
[3] Univ Ind Santander, Escuela Matemat, Bucaramanga 678, Colombia
来源
关键词
Chemotaxis; Navier-Stokes equations; Patlak-Keller-Segel model; distributed control; KELLER-SEGEL SYSTEM; STATIONARY SOLUTIONS; GLOBAL EXISTENCE; CONTROLLABILITY RESULT; BOUNDARY CONTROL; STEADY-STATES; DIFFUSION; ANGIOGENESIS; PATTERNS; FLOW;
D O I
10.3934/dcdsb.2017208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze an optimal distributed control problem where the state equations are given by a stationary chemotaxis model coupled with the Navier-Stokes equations. We consider that the movement and the interaction of cells are occurring in a smooth bounded domain of R-n; n = 2; 3; subject to homogeneous boundary conditions. We control the system through a distributed force and a coefficient of chemotactic sensitivity, leading the chemical concentration, the cell density, and the velocity field towards a given target concentration, density and velocity, respectively. In addition to the existence of optimal solution, we derive some optimality conditions.
引用
收藏
页码:557 / 571
页数:15
相关论文
共 50 条
  • [31] Temporal decay in negative Besov spaces for the 3D coupled chemotaxis-fluid equations
    Zhao, Jihong
    Zhou, Jianjun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 42 : 160 - 179
  • [32] Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces
    Yang, Minghua
    Fu, Zunwei
    Sun, Jinyi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (09) : 5867 - 5894
  • [33] A regularity condition and temporal asymptotics for chemotaxis-fluid equations
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    Lee, Ki-Ahm
    NONLINEARITY, 2018, 31 (02) : 351 - 387
  • [34] Random perturbations for the chemotaxis-fluid model with fractional dissipation: Global pathwise weak solutions
    Zhang, Lei
    Liu, Bin
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [35] THE SINGULAR CONVERGENCE OF A CHEMOTAXIS-FLUID SYSTEM MODELING CORAL FERTILIZATION
    Yang, Minghua
    Sun, Jinyi
    Fu, Zunwei
    Wang, Zheng
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (02) : 492 - 504
  • [36] GLOBAL SOLUTIONS FOR CHEMOTAXIS-FLUID SYSTEMS WITH SINGULAR CHEMOTACTIC SENSITIVITY
    Kim, Dongkwang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (10): : 5380 - 5395
  • [37] GLOBAL BOUNDEDNESS AND EVENTUAL REGULARITY OF CHEMOTAXIS-FLUID MODEL DRIVEN BY POROUS MEDIUM DIFFUSION
    Jin, Chunhua
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (05) : 1167 - 1193
  • [38] Global existence and aggregation of chemotaxis-fluid systems in dimension two
    Kong, Fanze
    Lai, Chen-Chih
    Wei, Juncheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 400 : 1 - 89
  • [39] The Singular Convergence of a Chemotaxis-Fluid System Modeling Coral Fertilization
    Minghua Yang
    Jinyi Sun
    Zunwei Fu
    Zheng Wang
    Acta Mathematica Scientia, 2023, 43 : 492 - 504
  • [40] An Application of BMO-type Space to Chemotaxis-fluid Equations
    Ming Hua Yang
    Yu Mei Zi
    Zun Wei Fu
    Acta Mathematica Sinica, English Series, 2023, 39 : 1650 - 1666