An Application of BMO-type Space to Chemotaxis-fluid Equations

被引:4
|
作者
Yang, Ming Hua [1 ]
Zi, Yu Mei [2 ]
Fu, Zun Wei [2 ,3 ]
机构
[1] Jiangxi Univ Finance & Econ, Dept Math, Nanchang 330032, Peoples R China
[2] Linyi Univ, Dept Math, Linyi 276005, Peoples R China
[3] Univ Suwon, Coll Informat Technol, 743 Bongdameup, Hwaseong 445743, Gyeonggi Do, South Korea
关键词
BMO-type space; Fourier transform; Besov space; Keller-Segel equation; Navier-Stokes equation; NAVIER-STOKES EQUATIONS; KELLER-SEGEL SYSTEM; GLOBAL EXISTENCE; WELL-POSEDNESS; ASYMPTOTIC-BEHAVIOR; MILD SOLUTIONS; MORREY SPACES; INITIAL DATA; UNIQUENESS;
D O I
10.1007/s10114-023-1514-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Keller-Segel model coupled to the incompressible Navier-Stokes system in 3-dimensional case. We prove that the system has a unique local solution when (u(0), n(0), c(0)) is an element of Phi(1)(01) x Phi(2)(01) x Phi(3)(01) x where Phi(1)(01) x Phi(2)(01) x Phi(3)(01) is a subspace of bmo(-1)(R-3)x(B) over dot(p,infinity)(-2+3/p) (R-3)x((B) over dot(p,infinity)(3/q) (R-3)boolean AND L-infinity (R-3)). Furthermore, we obtain that the system exists a unique global solution for any small initial data (u(0), n(0), c(0)) is an element of BMO-1(R-3) x . (B) over dot(p,infinity)(2+3/p) (R-3) x ((B) over dot(p,infinity)(3/q)(R-3) boolean AND L-infinity (R-3)). For the difference between these spaces and known ones, our results may be regarded as a new existence theorem on the system.
引用
收藏
页码:1650 / 1666
页数:17
相关论文
共 50 条
  • [41] On the inviscid limit of the 2D Navier-Stokes equations with vorticity belonging to BMO-type spaces
    Bernicot, Frederic
    Elgindi, Tarek
    Keraani, Sahbi
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02): : 597 - 619
  • [42] BMO-Type Functionals Related to the Total Variation and Connection to Denoising Models
    Lo Bianco, Serena Guarino
    Schiattarella, Roberta
    JOURNAL OF CONVEX ANALYSIS, 2024, 31 (02) : 671 - 688
  • [43] The two-dimensional Euler equation in Yudovich and bmo-type spaces
    Chen, Qionglei
    Miao, Changxing
    Zheng, Xiaoxin
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (01) : 195 - 240
  • [44] BMO-type estimates of Riesz transforms associated with generalized Schrodinger operators
    Liu, Yu
    Qi, Shuai
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (03) : 401 - 411
  • [45] Musielak–Orlicz BMO-type Spaces Associated with Generalized Approximations to the Identity
    Shao Xiong HOU
    Da Chun YANG
    Si Bei YANG
    Acta Mathematica Sinica(English Series), 2014, 30 (11) : 1917 - 1962
  • [46] THE SINGULAR CONVERGENCE OF A CHEMOTAXIS-FLUID SYSTEM MODELING CORAL FERTILIZATION
    Yang, Minghua
    Sun, Jinyi
    Fu, Zunwei
    Wang, Zheng
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (02) : 492 - 504
  • [47] GLOBAL SOLUTIONS FOR CHEMOTAXIS-FLUID SYSTEMS WITH SINGULAR CHEMOTACTIC SENSITIVITY
    Kim, Dongkwang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (10): : 5380 - 5395
  • [48] Global Dynamics of a Coupled Chemotaxis-Fluid Model on Bounded Domains
    Jishan Fan
    Kun Zhao
    Journal of Mathematical Fluid Mechanics, 2014, 16 : 351 - 364
  • [49] Global existence and aggregation of chemotaxis-fluid systems in dimension two
    Kong, Fanze
    Lai, Chen-Chih
    Wei, Juncheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 400 : 1 - 89
  • [50] The Singular Convergence of a Chemotaxis-Fluid System Modeling Coral Fertilization
    Minghua Yang
    Jinyi Sun
    Zunwei Fu
    Zheng Wang
    Acta Mathematica Scientia, 2023, 43 : 492 - 504