An Application of BMO-type Space to Chemotaxis-fluid Equations

被引:4
|
作者
Yang, Ming Hua [1 ]
Zi, Yu Mei [2 ]
Fu, Zun Wei [2 ,3 ]
机构
[1] Jiangxi Univ Finance & Econ, Dept Math, Nanchang 330032, Peoples R China
[2] Linyi Univ, Dept Math, Linyi 276005, Peoples R China
[3] Univ Suwon, Coll Informat Technol, 743 Bongdameup, Hwaseong 445743, Gyeonggi Do, South Korea
关键词
BMO-type space; Fourier transform; Besov space; Keller-Segel equation; Navier-Stokes equation; NAVIER-STOKES EQUATIONS; KELLER-SEGEL SYSTEM; GLOBAL EXISTENCE; WELL-POSEDNESS; ASYMPTOTIC-BEHAVIOR; MILD SOLUTIONS; MORREY SPACES; INITIAL DATA; UNIQUENESS;
D O I
10.1007/s10114-023-1514-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Keller-Segel model coupled to the incompressible Navier-Stokes system in 3-dimensional case. We prove that the system has a unique local solution when (u(0), n(0), c(0)) is an element of Phi(1)(01) x Phi(2)(01) x Phi(3)(01) x where Phi(1)(01) x Phi(2)(01) x Phi(3)(01) is a subspace of bmo(-1)(R-3)x(B) over dot(p,infinity)(-2+3/p) (R-3)x((B) over dot(p,infinity)(3/q) (R-3)boolean AND L-infinity (R-3)). Furthermore, we obtain that the system exists a unique global solution for any small initial data (u(0), n(0), c(0)) is an element of BMO-1(R-3) x . (B) over dot(p,infinity)(2+3/p) (R-3) x ((B) over dot(p,infinity)(3/q)(R-3) boolean AND L-infinity (R-3)). For the difference between these spaces and known ones, our results may be regarded as a new existence theorem on the system.
引用
收藏
页码:1650 / 1666
页数:17
相关论文
共 50 条
  • [21] BMO-type seminorms from Escher-type tessellations
    Di Fratta, Giovanni
    Fiorenza, Alberto
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (03)
  • [22] A BMO-Type Characterization of Higher Order Sobolev Spaces
    Serena Guarino Lo Bianco
    Roberta Schiattarella
    Potential Analysis, 2023, 59 : 917 - 932
  • [23] Representation of the Total Variation as a Γ-limit of BMO-type Seminorms
    Arroyo-Rabasa, Dolfo
    Bonicatto, Aolo
    del Nin, Giacomo
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2024, 73 (01) : 341 - 365
  • [24] A BMO-Type Characterization of Higher Order Sobolev Spaces
    Lo Bianco, Serena Guarino
    Schiattarella, Roberta
    POTENTIAL ANALYSIS, 2023, 59 (03) : 917 - 932
  • [25] Global Weak Solution to the Chemotaxis-Fluid System
    Mei LIU
    Mengling YU
    Hong LUO
    JournalofMathematicalResearchwithApplications, 2019, 39 (02) : 181 - 195
  • [26] BMO TYPE SPACE ASSOCIATED WITH NEUMANN OPERATOR AND APPLICATION TO A CLASS OF PARABOLIC EQUATIONS
    Chao, Zhang
    Yang, Minghua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (03): : 1629 - 1645
  • [27] A blow-up criterion of the coupled chemotaxis-fluid equations in R3
    Wang, Xiaofeng
    Ye, Hong
    APPLIED MATHEMATICS LETTERS, 2020, 105
  • [28] A coupled chemotaxis-fluid model: Global existence
    Liu, Jian-Guo
    Lorz, Alexander
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (05): : 643 - 652
  • [29] Global existence and boundedness of chemotaxis-fluid equations to the coupled Solow-Swan model
    Wu, Jie
    Yang, Zheng
    AIMS MATHEMATICS, 2023, 8 (08): : 17914 - 17942
  • [30] Global Existence of Large Solutions for the 3D Coupled Chemotaxis-Fluid Equations
    Cai, Zhongbo
    Zhao, Jihong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (02)