Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents

被引:2
|
作者
Izuki, Mitsuo [1 ]
Nogayama, Toru [2 ]
Noi, Takahiro [2 ]
Sawano, Yoshihiro [3 ,4 ]
机构
[1] Tokyo City Univ, Fac Liberal Arts & Sci, Setagaya Ku, 1-28-1 Tamadutsumi, Tokyo 1588557, Japan
[2] Tokyo Metropolitan Univ, Dept Math Sci, Hachioji, Tokyo 1920397, Japan
[3] Chuo Univ, Dept Math Sci, Bunkyo Ku, Kasuga, Tokyo 1128551, Japan
[4] Peoples Friendship Univ Russia, Moscow, Russia
基金
日本学术振兴会;
关键词
Variable exponent; Wavelet; Sobolev spaces; Local Muckenhoupt weight; LEBESGUE SPACES; MODULAR INEQUALITIES; MAXIMAL OPERATOR; DECOMPOSITIONS; AMALGAMS; BESOV; LP;
D O I
10.1007/s00365-022-09573-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is to define local weighted variable Sobolev spaces of fractional and negative order and their characterization by wavelets. We first consider local weighted variable Sobolev spaces by means of weak derivatives and obtain a wavelet characterization for these spaces. Using the Bessel potentials, we next define local weighted variable Sobolev spaces of fractional order. We show that Sobolev spaces obtained by weak derivatives and those by the Bessel potentials coincide. Finally, using duality, we define local weighted variable Sobolev spaces with negative order. We also show that local weighted variable Sobolev spaces are closed under complex interpolation. Some examples are given including the applications to weighted uniformly local Lebesgue spaces with variable exponents and periodic function spaces as a by-product, although the exponent is constant.
引用
收藏
页码:161 / 234
页数:74
相关论文
共 50 条
  • [1] Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents
    Mitsuo Izuki
    Toru Nogayama
    Takahiro Noi
    Yoshihiro Sawano
    Constructive Approximation, 2023, 57 : 161 - 234
  • [2] Wavelet characterization of local Muckenhoupt weighted Lebesgue spaces with variable exponent
    Izuki, Mitsuo
    Nogayama, Toru
    Noi, Takahiro
    Sawano, Yoshihiro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198 (198)
  • [3] Local Muckenhoupt class for variable exponents
    Toru Nogayama
    Yoshihiro Sawano
    Journal of Inequalities and Applications, 2021
  • [4] Local Muckenhoupt class for variable exponents
    Nogayama, Toru
    Sawano, Yoshihiro
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [5] ON DENSITY OF SMOOTH FUNCTIONS IN WEIGHTED SOBOLEV SPACES WITH VARIABLE EXPONENTS
    Zhikov, V. V.
    Surnachev, M. D.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) : 415 - 436
  • [6] Weighted local Hardy spaces with variable exponents
    Izuki, Mitsuo
    Nogayama, Toru
    Noi, Takahiro
    Sawano, Yoshihiro
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (12) : 5710 - 5785
  • [7] Wavelet characterization of Sobolev spaces with variable exponent
    Izuki, Mitsuo
    JOURNAL OF APPLIED ANALYSIS, 2011, 17 (01) : 37 - 49
  • [8] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [9] A weighted Sobolev theorem for spatial and spherical potentials in Lebesgue spaces with variable exponents
    Vakulov, BG
    Samko, SG
    DOKLADY MATHEMATICS, 2005, 72 (01) : 487 - 490
  • [10] Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications
    Ricardo H. Nochetto
    Enrique Otárola
    Abner J. Salgado
    Numerische Mathematik, 2016, 132 : 85 - 130