Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents

被引:2
|
作者
Izuki, Mitsuo [1 ]
Nogayama, Toru [2 ]
Noi, Takahiro [2 ]
Sawano, Yoshihiro [3 ,4 ]
机构
[1] Tokyo City Univ, Fac Liberal Arts & Sci, Setagaya Ku, 1-28-1 Tamadutsumi, Tokyo 1588557, Japan
[2] Tokyo Metropolitan Univ, Dept Math Sci, Hachioji, Tokyo 1920397, Japan
[3] Chuo Univ, Dept Math Sci, Bunkyo Ku, Kasuga, Tokyo 1128551, Japan
[4] Peoples Friendship Univ Russia, Moscow, Russia
基金
日本学术振兴会;
关键词
Variable exponent; Wavelet; Sobolev spaces; Local Muckenhoupt weight; LEBESGUE SPACES; MODULAR INEQUALITIES; MAXIMAL OPERATOR; DECOMPOSITIONS; AMALGAMS; BESOV; LP;
D O I
10.1007/s00365-022-09573-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is to define local weighted variable Sobolev spaces of fractional and negative order and their characterization by wavelets. We first consider local weighted variable Sobolev spaces by means of weak derivatives and obtain a wavelet characterization for these spaces. Using the Bessel potentials, we next define local weighted variable Sobolev spaces of fractional order. We show that Sobolev spaces obtained by weak derivatives and those by the Bessel potentials coincide. Finally, using duality, we define local weighted variable Sobolev spaces with negative order. We also show that local weighted variable Sobolev spaces are closed under complex interpolation. Some examples are given including the applications to weighted uniformly local Lebesgue spaces with variable exponents and periodic function spaces as a by-product, although the exponent is constant.
引用
收藏
页码:161 / 234
页数:74
相关论文
共 50 条
  • [21] A nonlinear elasticity system in Sobolev spaces with variable exponents
    Boubakeur, Merouani
    Fayrouz, Zoubai
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (01): : 17 - 33
  • [22] SOBOLEV INEQUALITIES FOR ORLICZ SPACES OF TWO VARIABLE EXPONENTS
    Hasto, Peter
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 227 - 240
  • [23] Compact embeddings for Sobolev spaces of two variable exponents
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (12) : 3009 - 3022
  • [24] DENSITY PROPERTIES FOR FRACTIONAL SOBOLEV SPACES WITH VARIABLE EXPONENTS
    Baalal, Azeddine
    Berghout, Mohamed
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (03) : 308 - 324
  • [25] Traces of weighted Sobolev spaces with Muckenhoupt weight. The case p=1
    Tyulenev, A. I.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 128 : 248 - 272
  • [26] Two Weighted Herz Spaces with Variable Exponents
    Mitsuo Izuki
    Takahiro Noi
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 169 - 200
  • [27] Characterizations of Weighted Besov Spaces with Variable Exponents
    Wang, Sheng Rong
    Guo, Peng Fei
    Xu, Jing Shi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (11) : 2855 - 2878
  • [28] Two Weighted Herz Spaces with Variable Exponents
    Izuki, Mitsuo
    Noi, Takahiro
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 169 - 200
  • [29] Characterizations of Weighted Besov Spaces with Variable Exponents
    Sheng Rong WANG
    Peng Fei GUO
    Jing Shi XU
    Acta Mathematica Sinica,English Series, 2024, (11) : 2855 - 2878
  • [30] Quasicontinuity on Weighted Sobolev Spaces with Variable Exponent
    Pinhong LONG
    Huili HAN
    Journal of Mathematical Research with Applications, 2016, 36 (06) : 659 - 664