Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents

被引:2
|
作者
Izuki, Mitsuo [1 ]
Nogayama, Toru [2 ]
Noi, Takahiro [2 ]
Sawano, Yoshihiro [3 ,4 ]
机构
[1] Tokyo City Univ, Fac Liberal Arts & Sci, Setagaya Ku, 1-28-1 Tamadutsumi, Tokyo 1588557, Japan
[2] Tokyo Metropolitan Univ, Dept Math Sci, Hachioji, Tokyo 1920397, Japan
[3] Chuo Univ, Dept Math Sci, Bunkyo Ku, Kasuga, Tokyo 1128551, Japan
[4] Peoples Friendship Univ Russia, Moscow, Russia
基金
日本学术振兴会;
关键词
Variable exponent; Wavelet; Sobolev spaces; Local Muckenhoupt weight; LEBESGUE SPACES; MODULAR INEQUALITIES; MAXIMAL OPERATOR; DECOMPOSITIONS; AMALGAMS; BESOV; LP;
D O I
10.1007/s00365-022-09573-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is to define local weighted variable Sobolev spaces of fractional and negative order and their characterization by wavelets. We first consider local weighted variable Sobolev spaces by means of weak derivatives and obtain a wavelet characterization for these spaces. Using the Bessel potentials, we next define local weighted variable Sobolev spaces of fractional order. We show that Sobolev spaces obtained by weak derivatives and those by the Bessel potentials coincide. Finally, using duality, we define local weighted variable Sobolev spaces with negative order. We also show that local weighted variable Sobolev spaces are closed under complex interpolation. Some examples are given including the applications to weighted uniformly local Lebesgue spaces with variable exponents and periodic function spaces as a by-product, although the exponent is constant.
引用
收藏
页码:161 / 234
页数:74
相关论文
共 50 条
  • [11] Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications
    Nochetto, Ricardo H.
    Otarola, Enrique
    Salgado, Abner J.
    NUMERISCHE MATHEMATIK, 2016, 132 (01) : 85 - 130
  • [12] Sobolev spaces with variable exponents on complete manifolds
    Gaczkowski, Michal
    Gorka, Przemyslaw
    Pons, Daniel J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (04) : 1379 - 1415
  • [13] Sobolev spaces with variable exponents on Riemannian manifolds
    Gaczkowski, Michal
    Gorka, Przemyslaw
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 92 : 47 - 59
  • [14] Weighted Besov spaces with variable exponents
    Wang, Shengrong
    Xu, Jingshi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)
  • [15] INEQUALITIES FOR WEIGHTED SPACES WITH VARIABLE EXPONENTS
    Rocha, Pablo
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (02): : 511 - 530
  • [16] Weighted Variable Sobolev Spaces and Capacity
    Aydin, Ismail
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [17] Embedding operators of Sobolev spaces with variable exponents and applications
    Shakhmurov, Veli B.
    ANALYSIS MATHEMATICA, 2015, 41 (04) : 273 - 297
  • [19] ON THE EQUIVALENCE OF DOMAINS IN THE THEORY OF SOBOLEV SPACES WITH VARIABLE EXPONENTS
    Romanov, Alexandr Sergeevich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 1024 - 1039
  • [20] Γ-convergence and homogenization of functionals in Sobolev spaces with variable exponents
    Amaziane, B.
    Antontsev, S.
    Pankratov, L.
    Piatnitski, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 1192 - 1202