Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents

被引:2
|
作者
Izuki, Mitsuo [1 ]
Nogayama, Toru [2 ]
Noi, Takahiro [2 ]
Sawano, Yoshihiro [3 ,4 ]
机构
[1] Tokyo City Univ, Fac Liberal Arts & Sci, Setagaya Ku, 1-28-1 Tamadutsumi, Tokyo 1588557, Japan
[2] Tokyo Metropolitan Univ, Dept Math Sci, Hachioji, Tokyo 1920397, Japan
[3] Chuo Univ, Dept Math Sci, Bunkyo Ku, Kasuga, Tokyo 1128551, Japan
[4] Peoples Friendship Univ Russia, Moscow, Russia
基金
日本学术振兴会;
关键词
Variable exponent; Wavelet; Sobolev spaces; Local Muckenhoupt weight; LEBESGUE SPACES; MODULAR INEQUALITIES; MAXIMAL OPERATOR; DECOMPOSITIONS; AMALGAMS; BESOV; LP;
D O I
10.1007/s00365-022-09573-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is to define local weighted variable Sobolev spaces of fractional and negative order and their characterization by wavelets. We first consider local weighted variable Sobolev spaces by means of weak derivatives and obtain a wavelet characterization for these spaces. Using the Bessel potentials, we next define local weighted variable Sobolev spaces of fractional order. We show that Sobolev spaces obtained by weak derivatives and those by the Bessel potentials coincide. Finally, using duality, we define local weighted variable Sobolev spaces with negative order. We also show that local weighted variable Sobolev spaces are closed under complex interpolation. Some examples are given including the applications to weighted uniformly local Lebesgue spaces with variable exponents and periodic function spaces as a by-product, although the exponent is constant.
引用
收藏
页码:161 / 234
页数:74
相关论文
共 50 条
  • [31] Compact embedding theorems for fractional Sobolev spaces with variable exponents
    Berghout, Mohamed
    Baalal, Azeddine
    ADVANCES IN OPERATOR THEORY, 2020, 5 (01) : 83 - 93
  • [32] On a nonlinear elasticity problem with friction and Sobolev spaces with variable exponents
    Boukrouche, Mahdi
    Merouani, Boubakeur
    Zoubai, Fayrouz
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2022, 2022 (01):
  • [33] SHORT PROOFS FOR INTERPOLATION INEQUALITIES IN SOBOLEV SPACES WITH VARIABLE EXPONENTS
    Tan Duc Do
    Bui Le Trong Thanh
    Nguyen Ngoc Trong
    COLLOQUIUM MATHEMATICUM, 2022, 170 (02) : 307 - 314
  • [34] Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (7-9) : 671 - 695
  • [35] Operator Equations and Duality Mappings in Sobolev Spaces with Variable Exponents
    Philippe G.CIARLET
    George DINCA
    Pavel MATEI
    ChineseAnnalsofMathematics(SeriesB), 2013, 34 (05) : 640 - 667
  • [36] On the Robin Problem with Indefinite Weight in Sobolev Spaces with Variable Exponents
    Kefi, Khaled
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2018, 37 (01): : 25 - 38
  • [37] Operator equations and duality mappings in Sobolev spaces with variable exponents
    Ciarlet, Philippe G.
    Dinca, George
    Matei, Pavel
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (05) : 639 - 666
  • [38] Some results of capacity in fractional Sobolev spaces with variable exponents
    Akdim, Youssef
    Elharch, Rachid
    Hassib, M. C.
    Rhali, Soumia Lalaoui
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) : 93 - 106
  • [39] Operator equations and duality mappings in Sobolev spaces with variable exponents
    Philippe G. Ciarlet
    George Dinca
    Pavel Matei
    Chinese Annals of Mathematics, Series B, 2013, 34 : 639 - 666
  • [40] Compact embedding theorems for fractional Sobolev spaces with variable exponents
    Mohamed Berghout
    Azeddine Baalal
    Advances in Operator Theory, 2020, 5 : 83 - 93