ON DENSITY OF SMOOTH FUNCTIONS IN WEIGHTED SOBOLEV SPACES WITH VARIABLE EXPONENTS

被引:14
|
作者
Zhikov, V. V. [1 ]
Surnachev, M. D. [2 ]
机构
[1] Vladimir State Univ, Stroitelei Ave, Vladimir 600000, Russia
[2] Russian Acad Sci, Aeroacust Lab, MV Keldysh Appl Math Inst, 4 Miusskaya Sq, Moscow 125047, Russia
基金
俄罗斯科学基金会;
关键词
Density of smooth functions; Lavrentiev phenomenon; Sobolev-Orlicz spaces; variable exponent; Muckenhoupt classes; GENERALIZED LEBESGUE; MAXIMAL-FUNCTION;
D O I
10.1090/spmj/1396
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sufficient condition for the density of smooth functions in the weighted Sobolev space with variable exponent is obtained. This condition is formulated in terms of the asymptotic behavior of the integrals of negative and positive powers of the weight.
引用
收藏
页码:415 / 436
页数:22
相关论文
共 50 条
  • [1] Density of smooth functions in weighted Sobolev spaces with variable exponent
    M. D. Surnachev
    Doklady Mathematics, 2014, 89 : 146 - 150
  • [2] Density of smooth functions in weighted Sobolev spaces with variable exponent
    Surnachev, M. D.
    DOKLADY MATHEMATICS, 2014, 89 (02) : 146 - 150
  • [3] Density of smooth functions in weighted Sobolev spaces
    V. V. Zhikov
    Doklady Mathematics, 2013, 88 : 669 - 673
  • [4] Density of smooth functions in weighted Sobolev spaces
    Zhikov, V. V.
    DOKLADY MATHEMATICS, 2013, 88 (03) : 669 - 673
  • [5] On density of smooth functions in weighted fractional Sobolev spaces
    Dyda, Bartlomiej
    Kijaczko, Michal
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 205
  • [6] Density of smooth functions in variable exponent Sobolev spaces
    Kostopoulos, Thanasis
    Yannakakis, Nikos
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 127 : 196 - 205
  • [7] DENSITY PROPERTIES FOR FRACTIONAL SOBOLEV SPACES WITH VARIABLE EXPONENTS
    Baalal, Azeddine
    Berghout, Mohamed
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (03) : 308 - 324
  • [8] Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents
    Mitsuo Izuki
    Toru Nogayama
    Takahiro Noi
    Yoshihiro Sawano
    Constructive Approximation, 2023, 57 : 161 - 234
  • [9] Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents
    Izuki, Mitsuo
    Nogayama, Toru
    Noi, Takahiro
    Sawano, Yoshihiro
    CONSTRUCTIVE APPROXIMATION, 2023, 57 (01) : 161 - 234
  • [10] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +