ON DENSITY OF SMOOTH FUNCTIONS IN WEIGHTED SOBOLEV SPACES WITH VARIABLE EXPONENTS

被引:14
|
作者
Zhikov, V. V. [1 ]
Surnachev, M. D. [2 ]
机构
[1] Vladimir State Univ, Stroitelei Ave, Vladimir 600000, Russia
[2] Russian Acad Sci, Aeroacust Lab, MV Keldysh Appl Math Inst, 4 Miusskaya Sq, Moscow 125047, Russia
基金
俄罗斯科学基金会;
关键词
Density of smooth functions; Lavrentiev phenomenon; Sobolev-Orlicz spaces; variable exponent; Muckenhoupt classes; GENERALIZED LEBESGUE; MAXIMAL-FUNCTION;
D O I
10.1090/spmj/1396
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sufficient condition for the density of smooth functions in the weighted Sobolev space with variable exponent is obtained. This condition is formulated in terms of the asymptotic behavior of the integrals of negative and positive powers of the weight.
引用
收藏
页码:415 / 436
页数:22
相关论文
共 50 条
  • [41] Quasicontinuity on Weighted Sobolev Spaces with Variable Exponent
    Pinhong LONG
    Huili HAN
    Journal of Mathematical Research with Applications, 2016, 36 (06) : 659 - 664
  • [42] Density of Smooth Functions in Anisotropic Weighted Sobolev Spaces with Weights that are Locally Bounded and Locally Bounded Away from Zero
    A. Yu. Golovko
    Mathematical Notes, 2021, 109 : 694 - 701
  • [43] Density of Smooth Functions in Anisotropic Weighted Sobolev Spaces with Weights that are Locally Bounded and Locally Bounded Away from Zero
    Golovko, A. Yu.
    MATHEMATICAL NOTES, 2021, 109 (5-6) : 694 - 701
  • [44] Compact embedding theorems for fractional Sobolev spaces with variable exponents
    Berghout, Mohamed
    Baalal, Azeddine
    ADVANCES IN OPERATOR THEORY, 2020, 5 (01) : 83 - 93
  • [45] On a nonlinear elasticity problem with friction and Sobolev spaces with variable exponents
    Boukrouche, Mahdi
    Merouani, Boubakeur
    Zoubai, Fayrouz
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2022, 2022 (01):
  • [46] SHORT PROOFS FOR INTERPOLATION INEQUALITIES IN SOBOLEV SPACES WITH VARIABLE EXPONENTS
    Tan Duc Do
    Bui Le Trong Thanh
    Nguyen Ngoc Trong
    COLLOQUIUM MATHEMATICUM, 2022, 170 (02) : 307 - 314
  • [47] Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (7-9) : 671 - 695
  • [48] Operator Equations and Duality Mappings in Sobolev Spaces with Variable Exponents
    Philippe G.CIARLET
    George DINCA
    Pavel MATEI
    ChineseAnnalsofMathematics(SeriesB), 2013, 34 (05) : 640 - 667
  • [49] On the Robin Problem with Indefinite Weight in Sobolev Spaces with Variable Exponents
    Kefi, Khaled
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2018, 37 (01): : 25 - 38
  • [50] Operator equations and duality mappings in Sobolev spaces with variable exponents
    Ciarlet, Philippe G.
    Dinca, George
    Matei, Pavel
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (05) : 639 - 666