Quantum Teleportation in the Commuting Operator Framework

被引:1
|
作者
Conlon, Alexandre [1 ]
Crann, Jason [1 ]
Kribs, David W. W. [2 ,3 ]
Levene, Rupert H. H. [4 ,5 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON H1S 5B6, Canada
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Coll Dublin, Sch Math & Stat, Dublin 4, Ireland
[5] Univ Coll Dublin, Ctr Quantum Engn Sci & Technol, Dublin 4, Ireland
来源
ANNALES HENRI POINCARE | 2023年 / 24卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
46L10; 46L30; 46N50; 47L90; 81P40; 81P45; 81R15; SUBFACTORS; CHANNELS; CAPACITY; ENTROPY; INDEX;
D O I
10.1007/s00023-022-01255-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a notion of teleportation scheme between subalgebras of semi-finite von Neumann algebras in the commuting operator model of locality. Using techniques from subfactor theory, we present unbiased teleportation schemes for relative commutants N' & cap; M of a large class of finite-index inclusions N subset of M of tracial von Neumann algebras, where the unbiased condition means that no information about the teleported observables is contained in the classical communication sent between the parties. For a large class of subalgebras N of matrix algebras Mn(C), including those relevant to hybrid classical/quantum codes, we show that any tight teleportation scheme for N necessarily arises from an orthonormal unitary Pimsner-Popa basis of Mn(C) over N', generalising work of Werner (J Phys A 34(35):7081-7094, 2001). Combining our techniques with those of Brannan-Ganesan-Harris (J Math Phys 63(11): 112204, 2022) we compute quantum chromatic numbers for a variety of quantum graphs arising from finite-dimensional inclusions N subset of M.
引用
收藏
页码:1779 / 1821
页数:43
相关论文
共 50 条
  • [31] OPERATOR RADII OF COMMUTING PRODUCTS
    OKUBO, K
    ANDO, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 56 (APR) : 203 - 210
  • [32] On commuting operator exponentials, II
    Paliogiannis, Fotios C.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (01): : 27 - 31
  • [33] On commuting operator exponentials, II
    FOTIOS C PALIOGIANNIS
    Proceedings - Mathematical Sciences, 2013, 123 : 27 - 31
  • [34] Quantum entanglement and quantum teleportation
    Shih, YH
    ANNALEN DER PHYSIK, 2001, 10 (1-2) : 19 - 34
  • [35] Quantum Energy Teleportation versus Information Teleportation
    Wang, Jinzhao
    Yao, Shunyu
    QUANTUM, 2024, 8 : 1 - 12
  • [36] Catalytic Quantum Teleportation
    Lipka-Bartosik, Patryk
    Skrzypczyk, Paul
    PHYSICAL REVIEW LETTERS, 2021, 127 (08)
  • [37] Scrambling and quantum teleportation
    MuSeong Kim
    Mi-Ra Hwang
    Eylee Jung
    DaeKil Park
    Quantum Information Processing, 22
  • [38] Quantum teleportation and holography
    Sokolov, I.V.
    Gatti, A.
    Kolobov, M.I.
    Lugiato, L.A.
    Uspekhi Fizicheskikh Nauk, 2001, 171 (11): : 1264 - 1267
  • [39] Optomechanical quantum teleportation
    Niccolò Fiaschi
    Bas Hensen
    Andreas Wallucks
    Rodrigo Benevides
    Jie Li
    Thiago P. Mayer Alegre
    Simon Gröblacher
    Nature Photonics, 2021, 15 : 817 - 821
  • [40] Teleportation of quantum coherence
    Sohail
    Pati, Arun K.
    Aradhya, Vijeth
    Chakrabarty, Indranil
    Patro, Subhasree
    PHYSICAL REVIEW A, 2023, 108 (04)