Quantum Teleportation in the Commuting Operator Framework

被引:1
|
作者
Conlon, Alexandre [1 ]
Crann, Jason [1 ]
Kribs, David W. W. [2 ,3 ]
Levene, Rupert H. H. [4 ,5 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON H1S 5B6, Canada
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Coll Dublin, Sch Math & Stat, Dublin 4, Ireland
[5] Univ Coll Dublin, Ctr Quantum Engn Sci & Technol, Dublin 4, Ireland
来源
ANNALES HENRI POINCARE | 2023年 / 24卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
46L10; 46L30; 46N50; 47L90; 81P40; 81P45; 81R15; SUBFACTORS; CHANNELS; CAPACITY; ENTROPY; INDEX;
D O I
10.1007/s00023-022-01255-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a notion of teleportation scheme between subalgebras of semi-finite von Neumann algebras in the commuting operator model of locality. Using techniques from subfactor theory, we present unbiased teleportation schemes for relative commutants N' & cap; M of a large class of finite-index inclusions N subset of M of tracial von Neumann algebras, where the unbiased condition means that no information about the teleported observables is contained in the classical communication sent between the parties. For a large class of subalgebras N of matrix algebras Mn(C), including those relevant to hybrid classical/quantum codes, we show that any tight teleportation scheme for N necessarily arises from an orthonormal unitary Pimsner-Popa basis of Mn(C) over N', generalising work of Werner (J Phys A 34(35):7081-7094, 2001). Combining our techniques with those of Brannan-Ganesan-Harris (J Math Phys 63(11): 112204, 2022) we compute quantum chromatic numbers for a variety of quantum graphs arising from finite-dimensional inclusions N subset of M.
引用
收藏
页码:1779 / 1821
页数:43
相关论文
共 50 条
  • [41] Quantum teleportation of microwaves
    Eroshenko, Yu N.
    PHYSICS-USPEKHI, 2022, 65 (02)
  • [42] Quantum holographic teleportation
    Sokolov, IV
    Kolobov, MI
    Gatti, A
    Lugiato, LA
    OPTICS COMMUNICATIONS, 2001, 193 (1-6) : 175 - 180
  • [43] Experimental quantum teleportation
    Bouwmeester, D
    Pan, JW
    Mattle, K
    Eibl, M
    Weinfurter, H
    Zeilinger, A
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1743): : 1733 - 1737
  • [44] Scrambling and quantum teleportation
    Kim, MuSeong
    Hwang, Mi-Ra
    Jung, Eylee
    Park, DaeKil
    QUANTUM INFORMATION PROCESSING, 2023, 22 (04)
  • [45] TELEPORTATION OF QUANTUM STATES
    VAIDMAN, L
    PHYSICAL REVIEW A, 1994, 49 (02): : 1473 - 1476
  • [46] Cascade quantum teleportation
    Zhou Nan-run
    Gong Li-hua
    Liu Ye
    OPTOELECTRONICS LETTERS, 2006, 2 (06) : 455 - 458
  • [47] Quantum Energy Teleportation
    Hotta, Masahiro
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC), 2009, 1110 : 373 - 375
  • [48] SuperDense quantum teleportation
    Bernstein, Herbert J.
    QUANTUM INFORMATION PROCESSING, 2006, 5 (06) : 451 - 461
  • [49] Progress in quantum teleportation
    Xiao-Min Hu
    Yu Guo
    Bi-Heng Liu
    Chuan-Feng Li
    Guang-Can Guo
    Nature Reviews Physics, 2023, 5 : 339 - 353
  • [50] Boosted quantum teleportation
    D'Aurelio, Simone E.
    Bayerbach, Matthias J.
    Barz, Stefanie
    NPJ QUANTUM INFORMATION, 2025, 11 (01)