Quantum Teleportation in the Commuting Operator Framework

被引:1
|
作者
Conlon, Alexandre [1 ]
Crann, Jason [1 ]
Kribs, David W. W. [2 ,3 ]
Levene, Rupert H. H. [4 ,5 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON H1S 5B6, Canada
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Coll Dublin, Sch Math & Stat, Dublin 4, Ireland
[5] Univ Coll Dublin, Ctr Quantum Engn Sci & Technol, Dublin 4, Ireland
来源
ANNALES HENRI POINCARE | 2023年 / 24卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
46L10; 46L30; 46N50; 47L90; 81P40; 81P45; 81R15; SUBFACTORS; CHANNELS; CAPACITY; ENTROPY; INDEX;
D O I
10.1007/s00023-022-01255-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a notion of teleportation scheme between subalgebras of semi-finite von Neumann algebras in the commuting operator model of locality. Using techniques from subfactor theory, we present unbiased teleportation schemes for relative commutants N' & cap; M of a large class of finite-index inclusions N subset of M of tracial von Neumann algebras, where the unbiased condition means that no information about the teleported observables is contained in the classical communication sent between the parties. For a large class of subalgebras N of matrix algebras Mn(C), including those relevant to hybrid classical/quantum codes, we show that any tight teleportation scheme for N necessarily arises from an orthonormal unitary Pimsner-Popa basis of Mn(C) over N', generalising work of Werner (J Phys A 34(35):7081-7094, 2001). Combining our techniques with those of Brannan-Ganesan-Harris (J Math Phys 63(11): 112204, 2022) we compute quantum chromatic numbers for a variety of quantum graphs arising from finite-dimensional inclusions N subset of M.
引用
收藏
页码:1779 / 1821
页数:43
相关论文
共 50 条
  • [21] A HYPERBOLIC UNIVERSAL OPERATOR COMMUTING WITH A COMPACT OPERATOR
    Cowen, Carl C.
    Gallardo-Gutierrez, Eva A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (05) : 1985 - 1995
  • [22] High-fidelity quantum teleportation and a quantum teleportation network
    Takei, Nobuyuki
    Yonezawa, Hidehiro
    Aoki, Takao
    Furusawa, Akira
    QUANTUM INFORMATION WITH CONTINOUS VARIABLES OF ATOMS AND LIGHT, 2007, : 265 - +
  • [23] Quantum teleportation
    Braunstein, SL
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2002, 50 (5-7): : 608 - 613
  • [24] Quantum teleportation
    D. A. Slavnov
    Theoretical and Mathematical Physics, 2008, 157 : 1433 - 1447
  • [25] Analytical framework for quantum alternating operator ansatze
    Hadfield, Stuart
    Hogg, Tad
    Rieffel, Eleanor G.
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (01)
  • [26] A probabilistic operator symbol framework for quantum information
    Margarita A. Man’ko
    Vladimir I. Man’ko
    Rui Vilela Mendes
    Journal of Russian Laser Research, 2006, 27 : 507 - 532
  • [27] A probabilistic operator symbol framework for quantum information
    Man'ko, Margarita A.
    Man'ko, Vladimir I.
    Mendes, Rui Vilela
    JOURNAL OF RUSSIAN LASER RESEARCH, 2006, 27 (06) : 507 - 532
  • [28] Many-Body Quantum Teleportation via Operator Spreading in the Traversable Wormhole Protocol
    Schuster, Thomas
    Kobrin, Bryce
    Gao, Ping
    Cong, Iris
    Khabiboulline, Emil T.
    Linke, Norbert M.
    Lukin, Mikhail D.
    Monroe, Christopher
    Yoshida, Beni
    Yao, Norman Y.
    PHYSICAL REVIEW X, 2022, 12 (03)
  • [29] COMMUTING PERTURBATIONS OF OPERATOR EQUATIONS
    Xu, Xue
    Ding, Jiu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (04): : 1691 - 1698
  • [30] A remark on commuting operator exponentials
    Wermuth, EME
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) : 1685 - 1688