Self-adjoint and normal operator;
commuting normal operator exponentials;
Borel functional calculus;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We prove that, under sufficient conditions on the spectra,
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ e^Me^N\subseteq e^Ne^M\Rightarrow MN\subseteq NM , $$\end{document} where N is an unbounded normal operator and M is a bounded normal operator in the Hilbert space.