Infinitesimal symmetries of bundle gerbes and Courant algebroids

被引:1
|
作者
Djounvouna, Dinamo [1 ]
Krepski, Derek [1 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bundle gerbe; Courant algebroid; Lie; 2-algebra; Multisymplectic; 2-plectic; Quantomorphism; LIE; GEOMETRY;
D O I
10.1007/s10711-024-00897-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a smooth manifold and let chi is an element of omega 3(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi \in \Omega <^>3(M)$$\end{document} be closed differential form with integral periods. We show the Lie 2-algebra L(C chi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {L}(C_\chi )$$\end{document} of sections of the chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}-twisted Courant algebroid C chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\chi $$\end{document} on M is quasi-isomorphic to the Lie 2-algebra of connection-preserving multiplicative vector fields on an S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S<^>1$$\end{document}-bundle gerbe with connection (over M) whose 3-curvature is chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Foliated Lie and Courant Algebroids
    Izu Vaisman
    Mediterranean Journal of Mathematics, 2010, 7 : 415 - 444
  • [22] On higher analogues of Courant algebroids
    YanHui Bi
    YunHe Sheng
    Science China Mathematics, 2011, 54 : 437 - 447
  • [23] Bundle Gerbes
    Murray, MK
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 : 403 - 416
  • [24] Courant-Nijenhuis algebroids
    Bursztyn, Henrique
    Drummond, Thiago
    Netto, Clarice
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 192
  • [25] Foliated Lie and Courant Algebroids
    Vaisman, Izu
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (04) : 415 - 444
  • [26] On Curvature and Torsion in Courant Algebroids
    Aschieri, Paolo
    Bonechi, Francesco
    Deser, Andreas
    ANNALES HENRI POINCARE, 2021, 22 (07): : 2475 - 2496
  • [27] On Curvature and Torsion in Courant Algebroids
    Paolo Aschieri
    Francesco Bonechi
    Andreas Deser
    Annales Henri Poincaré, 2021, 22 : 2475 - 2496
  • [28] LINEARIZATION OF THE HIGHER ANALOGUE OF COURANT ALGEBROIDS
    Lang, Honglei
    Sheng, Yunhe
    JOURNAL OF GEOMETRIC MECHANICS, 2020, 12 (04): : 585 - 606
  • [29] Lie and Courant algebroids on foliated manifolds
    Vaisman, Izu
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (04): : 805 - 830
  • [30] On higher-dimensional Courant algebroids
    Paul Bressler
    Camilo Rengifo
    Letters in Mathematical Physics, 2018, 108 : 2099 - 2137