Let M be a smooth manifold and let chi is an element of omega 3(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi \in \Omega <^>3(M)$$\end{document} be closed differential form with integral periods. We show the Lie 2-algebra L(C chi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {L}(C_\chi )$$\end{document} of sections of the chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}-twisted Courant algebroid C chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\chi $$\end{document} on M is quasi-isomorphic to the Lie 2-algebra of connection-preserving multiplicative vector fields on an S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S<^>1$$\end{document}-bundle gerbe with connection (over M) whose 3-curvature is chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}.
机构:
Jilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R ChinaJilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R China
Sheng, Yunhe
Xu, Xiaomeng
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R ChinaJilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R China
Xu, Xiaomeng
Zhu, Chenchang
论文数: 0引用数: 0
h-index: 0
机构:
Georg August Univ Gottingen, Math Inst, D-37073 Gottingen, Niedersachsen, GermanyJilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R China