Infinitesimal symmetries of bundle gerbes and Courant algebroids

被引:1
|
作者
Djounvouna, Dinamo [1 ]
Krepski, Derek [1 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bundle gerbe; Courant algebroid; Lie; 2-algebra; Multisymplectic; 2-plectic; Quantomorphism; LIE; GEOMETRY;
D O I
10.1007/s10711-024-00897-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a smooth manifold and let chi is an element of omega 3(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi \in \Omega <^>3(M)$$\end{document} be closed differential form with integral periods. We show the Lie 2-algebra L(C chi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {L}(C_\chi )$$\end{document} of sections of the chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}-twisted Courant algebroid C chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\chi $$\end{document} on M is quasi-isomorphic to the Lie 2-algebra of connection-preserving multiplicative vector fields on an S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S<^>1$$\end{document}-bundle gerbe with connection (over M) whose 3-curvature is chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Contact Courant algebroids and L∞-algebras
    Das, Apurba
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 163
  • [32] On higher-dimensional Courant algebroids
    Bressler, Paul
    Rengifo, Camilo
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (09) : 2099 - 2137
  • [33] Canonical metrics on holomorphic Courant algebroids
    Garcia-Fernandez, Mario
    Rubio, Roberto
    Shahbazi, Carlos
    Tipler, Carl
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2022, 125 (03) : 700 - 758
  • [34] The standard cohomology of regular Courant algebroids
    Cai, Xiongwei
    Chen, Zhuo
    Xiang, Maosong
    ADVANCES IN MATHEMATICS, 2022, 411
  • [35] Lie and Courant algebroids on foliated manifolds
    Izu Vaisman
    Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 805 - 830
  • [36] Lie rackoids integrating Courant algebroids
    Camille Laurent-Gengoux
    Friedrich Wagemann
    Annals of Global Analysis and Geometry, 2020, 57 : 225 - 256
  • [37] A construction of Courant algebroids on foliated manifolds
    Vaisman, Izu
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2010, 53 (02): : 177 - 183
  • [38] Split Courant algebroids as L∞-structures
    Antunes, P.
    Nunes da Costa, J. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 155
  • [39] Lie rackoids integrating Courant algebroids
    Laurent-Gengoux, Camille
    Wagemann, Friedrich
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 57 (02) : 225 - 256
  • [40] Courant Algebroids. A Short History
    Kosmann-Schwarzbach, Yvette
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9