Courant-Nijenhuis algebroids

被引:0
|
作者
Bursztyn, Henrique [1 ]
Drummond, Thiago [2 ]
Netto, Clarice [3 ]
机构
[1] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Dept Matemat, Inst Matemat, Caixa Postal 68530, BR-21941909 Rio De Janeiro, RJ, Brazil
[3] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010,Cidade Univ, BR-05508090 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Courant algebroids; Nijenhuis operators; Dirac-Nijenhuis structures; Lie-Nijenhuis bialgebroids; POISSON GEOMETRY; LIE; QUASI;
D O I
10.1016/j.geomphys.2023.104923
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce Courant 1-derivations, which describe a compatibility between Courant algebroids and linear (1,1)-tensor fields and lead to the notion of Courant-Nijenhuis algebroids. We provide examples of Courant 1-derivations on exact Courant algebroids and show that holomorphic Courant algebroids can be viewed as special types of CourantNijenhuis algebroids. By considering Dirac structures, one recovers the Dirac-Nijenhuis structures of [5] (in the special case of the standard Courant algebroid) and obtains an equivalent description of Lie-Nijenhuis bialgebroids [9] via Manin triples.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A note on the shifted Courant-Nijenhuis torsion
    Aldi, Marco
    Da Silva, Sergio
    Grandini, Daniele
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 94
  • [2] Nijenhuis structures on Courant algebroids
    Kosmann-Schwarzbach, Yvette
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (04): : 625 - 649
  • [3] Nijenhuis structures on Courant algebroids
    Yvette Kosmann-Schwarzbach
    Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 625 - 649
  • [4] Nijenhuis and compatible tensors on Lie and Courant algebroids
    Antunes, P.
    Nunes da Costa, J. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 65 : 66 - 79
  • [5] On Jacobi quasi-Nijenhuis algebroids and Courant-Jacobi algebroid morphisms
    Caseiro, Raquel
    De Nicola, Antonio
    Nunes da Costa, Joana M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (6-8) : 951 - 961
  • [6] Courant algebroids
    Bressler P.
    Chervov A.
    Journal of Mathematical Sciences, 2005, 128 (4) : 3030 - 3053
  • [7] Reduction of Poisson-Nijenhuis Lie algebroids to symplectic-Nijenhuis Lie algebroids with a nondegenerate Nijenhuis tensor
    De Nicola, Antonio
    Carlos Marrero, Juan
    Padron, Edith
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (42)
  • [8] ON REGULAR COURANT ALGEBROIDS
    Chen, Zhuo
    Stienon, Mathieu
    Xu, Ping
    JOURNAL OF SYMPLECTIC GEOMETRY, 2013, 11 (01) : 1 - 24
  • [9] VB-Courant Algebroids, E-Courant Algebroids and Generalized Geometry
    Lang, Honglei
    Sheng, Yunhe
    Wade, Aissa
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (03): : 588 - 607
  • [10] On higher analogues of Courant algebroids
    Bi YanHui
    Sheng YunHe
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (03) : 437 - 447