neural networks;
inverse problems;
PINNS;
induction heating;
material data;
D O I:
10.3390/ma16145013
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Physics-Informed neural networks (PINNs) have demonstrated remarkable performance in solving partial differential equations (PDEs) by incorporating the governing PDEs into the network's loss function during optimization. PINNs have been successfully applied to diverse inverse and forward problems. This study investigates the feasibility of using PINNs for material data identification in an induction hardening test rig. By utilizing temperature sensor data and imposing the heat equation with initial and boundary conditions, thermo-physical material properties, such as specific heat, thermal conductivity, and the heat convection coefficient, were estimated. To validate the effectiveness of the PINNs in material data estimation, benchmark data generated by a finite element model (FEM) of an air-cooled cylindrical sample were used. The accurate identification of the material data using only a limited number of virtual temperature sensor data points was demonstrated. The influence of the sensor positions and measurement noise on the uncertainty of the estimated parameters was examined. The study confirms the robustness and accuracy of this approach in the presence of measurement noise, albeit with lower efficiency, thereby requiring more time to converge. Lastly, the applicability of the presented approach to real measurement data obtained from an air-cooled cylindrical sample heated in an induction heating test rig was discussed. This research contributes to the accurate offline estimation of material data and has implications for optimizing induction heat treatments.
机构:
Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, ChileInstituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile
Rojas, Sergio
Maczuga, Pawel
论文数: 0引用数: 0
h-index: 0
机构:
AGH University of Krakow, PolandInstituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile
Maczuga, Pawel
论文数: 引用数:
h-index:
机构:
Muñoz-Matute, Judit
论文数: 引用数:
h-index:
机构:
Pardo, David
Paszyński, Maciej
论文数: 0引用数: 0
h-index: 0
机构:
AGH University of Krakow, PolandInstituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile
机构:
Univ Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, Brazil
Univ Fed Fluminense, Inst Comp, IC UFF, Niteroi, RJ, BrazilUniv Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, Brazil
de Oliveira, Lyncoln S.
Kunstmann, Liliane
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, Brazil
Kunstmann, Liliane
Pina, Debora
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, Brazil
Pina, Debora
de Oliveira, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Fluminense, Inst Comp, IC UFF, Niteroi, RJ, BrazilUniv Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, Brazil
de Oliveira, Daniel
Mattoso, Marta
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, Brazil
Mattoso, Marta
2023 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS, SBAC-PADW,
2023,
: 16
-
23