Robust Variational Physics-Informed Neural Networks

被引:6
|
作者
Rojas, Sergio [1 ]
Maczuga, Pawel [2 ]
Munoz-Matute, Judit [3 ,4 ]
Pardo, David [3 ,5 ,6 ]
Paszynski, Maciej [2 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Inst Matemat, Valparaiso, Chile
[2] AGH Univ Krakow, Krakow, Poland
[3] Basque Ctr Appl Math BCAM, Bilbao, Spain
[4] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX USA
[5] Univ Basque Country UPV EHU, Bilbao, Spain
[6] Ikerbasque, Bilbao, Spain
关键词
Robustness; Variational Physics-Informed Neural Networks; Petrov-Galerkin formulation; Riesz representation; Minimum residual principle; A posteriori error estimation; SYSTEM LEAST-SQUARES; DPG METHOD; FRAMEWORK; STOKES;
D O I
10.1016/j.cma.2024.116904
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a Robust version of the Variational Physics-Informed Neural Networks method (RVPINNs). As in VPINNs, we define the quadratic loss functional in terms of a Petrov-Galerkintype variational formulation of the PDE problem: the trial space is a (Deep) Neural Network (DNN) manifold, while the test space is a finite-dimensional vector space. Whereas the VPINN's loss depends upon the selected basis functions of a given test space, herein, we minimize a loss based on the discrete dual norm of the residual. The main advantage of such a loss definition is that it provides a reliable and efficient estimator of the true error in the energy norm under the assumption of the existence of a local Fortin operator. We test the performance and robustness of our algorithm in several advection-diffusion problems. These numerical results perfectly align with our theoretical findings, showing that our estimates are sharp.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Muñoz-Matute, Judit
    Pardo, David
    Paszyński, Maciej
    Computer Methods in Applied Mechanics and Engineering, 2024, 425
  • [2] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [3] Optimizing Variational Physics-Informed Neural Networks Using Least Squares
    Uriarte, Carlos
    Bastidas, Manuela
    Pardo, David
    Taylor, Jamie M.
    Rojas, Sergio
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 185 : 76 - 93
  • [4] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [5] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [6] Solving PDEs by variational physics-informed neural networks: an a posteriori error analysis
    Berrone S.
    Canuto C.
    Pintore M.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2022, 68 (2) : 575 - 595
  • [7] hp-VPINNs: Variational physics-informed neural networks with domain decomposition
    Kharazmi, Ehsan
    Zhang, Zhongqiang
    Karniadakis, George E. M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 374
  • [8] SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS
    Son, Hwijae
    Jang, Jin woo
    Han, Woo jin
    Hwang, Hyung ju
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1679 - 1705
  • [9] Enhanced physics-informed neural networks for hyperelasticity
    Abueidda, Diab W.
    Koric, Seid
    Guleryuz, Erman
    Sobh, Nahil A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (07) : 1585 - 1601
  • [10] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):