Robust Variational Physics-Informed Neural Networks

被引:0
|
作者
Rojas, Sergio [1 ]
Maczuga, Pawel [2 ]
Muñoz-Matute, Judit [3 ,4 ]
Pardo, David [3 ,5 ,6 ]
Paszyński, Maciej [2 ]
机构
[1] Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile
[2] AGH University of Krakow, Poland
[3] Basque Center for Applied Mathematics (BCAM), Spain
[4] Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, United States
[5] University of the Basque Country (UPV/EHU), Spain
[6] Ikerbasque, Spain
关键词
A-posteriori error estimations - Minimum residual principle - Neural network method - Neural-networks - Petrov-galerkin formulations - Quadratic loss - Riesz representations - Robustness - Test space - Variational physic-informed neural network;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Munoz-Matute, Judit
    Pardo, David
    Paszynski, Maciej
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 425
  • [2] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [3] Optimizing Variational Physics-Informed Neural Networks Using Least Squares
    Uriarte, Carlos
    Bastidas, Manuela
    Pardo, David
    Taylor, Jamie M.
    Rojas, Sergio
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 185 : 76 - 93
  • [4] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [5] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [6] Solving PDEs by variational physics-informed neural networks: an a posteriori error analysis
    Berrone S.
    Canuto C.
    Pintore M.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2022, 68 (2) : 575 - 595
  • [7] hp-VPINNs: Variational physics-informed neural networks with domain decomposition
    Kharazmi, Ehsan
    Zhang, Zhongqiang
    Karniadakis, George E. M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 374
  • [8] SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS
    Son, Hwijae
    Jang, Jin woo
    Han, Woo jin
    Hwang, Hyung ju
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1679 - 1705
  • [9] Enhanced physics-informed neural networks for hyperelasticity
    Abueidda, Diab W.
    Koric, Seid
    Guleryuz, Erman
    Sobh, Nahil A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (07) : 1585 - 1601
  • [10] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):