Robust Variational Physics-Informed Neural Networks

被引:0
|
作者
Rojas, Sergio [1 ]
Maczuga, Pawel [2 ]
Muñoz-Matute, Judit [3 ,4 ]
Pardo, David [3 ,5 ,6 ]
Paszyński, Maciej [2 ]
机构
[1] Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile
[2] AGH University of Krakow, Poland
[3] Basque Center for Applied Mathematics (BCAM), Spain
[4] Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, United States
[5] University of the Basque Country (UPV/EHU), Spain
[6] Ikerbasque, Spain
关键词
A-posteriori error estimations - Minimum residual principle - Neural network method - Neural-networks - Petrov-galerkin formulations - Quadratic loss - Riesz representations - Robustness - Test space - Variational physic-informed neural network;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] iPINNs: incremental learning for Physics-informed neural networks
    Dekhovich, Aleksandr
    Sluiter, Marcel H. F.
    Tax, David M. J.
    Bessa, Miguel A.
    ENGINEERING WITH COMPUTERS, 2025, 41 (01) : 389 - 402
  • [42] Sensitivity analysis using Physics-informed neural networks
    Hanna, John M.
    Aguado, Jose, V
    Comas-Cardona, Sebastien
    Askri, Ramzi
    Borzacchiello, Domenico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [43] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (05)
  • [44] Physics-informed neural networks for spherical indentation problems
    Marimuthu, Karuppasamy Pandian
    Lee, Hyungyil
    MATERIALS & DESIGN, 2023, 236
  • [45] Stiff-PDEs and Physics-Informed Neural Networks
    Prakhar Sharma
    Llion Evans
    Michelle Tindall
    Perumal Nithiarasu
    Archives of Computational Methods in Engineering, 2023, 30 (5) : 2929 - 2958
  • [46] Self-Adaptive Physics-Informed Neural Networks
    Texas A&M University, United States
    1600,
  • [47] Temporal consistency loss for physics-informed neural networks
    Thakur, Sukirt
    Raissi, Maziar
    Mitra, Harsa
    Ardekani, Arezoo M.
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [48] Discontinuity Computing Using Physics-Informed Neural Networks
    Liu, Li
    Liu, Shengping
    Xie, Hui
    Xiong, Fansheng
    Yu, Tengchao
    Xiao, Mengjuan
    Liu, Lufeng
    Yong, Heng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [49] Adaptive task decomposition physics-informed neural networks
    Yang, Jianchuan
    Liu, Xuanqi
    Diao, Yu
    Chen, Xi
    Hu, Haikuo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [50] Physics-informed neural networks for modeling astrophysical shocks
    Moschou, S. P.
    Hicks, E.
    Parekh, R. Y.
    Mathew, D.
    Majumdar, S.
    Vlahakis, N.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):