PINNProv: Provenance for Physics-Informed Neural Networks

被引:1
|
作者
de Oliveira, Lyncoln S. [1 ,2 ]
Kunstmann, Liliane [1 ]
Pina, Debora [1 ]
de Oliveira, Daniel [2 ]
Mattoso, Marta [1 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, Brazil
[2] Univ Fed Fluminense, Inst Comp, IC UFF, Niteroi, RJ, Brazil
关键词
provenance; physics-informed neural network;
D O I
10.1109/SBAC-PADW60351.2023.00013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine Learning is being used increasingly in different application areas. Physics-Informed Neural Networks (PINN) stand out, adapting neural networks to predict solutions to Physics phenomena. Incorporating Physics knowledge into the loss function of a neural network, PINNs revolutionize the solutions of partial differential equations. Considering the lack of support for analytics and reproducibility of the trained models, in this paper we propose the capture and use of provenance data, aimed at the analysis of PINN models. We conducted experiments using TensorFlow and DeepXDE, in a high-performance computing environment. Our experiments show the contributions of these provenance queries in different PINN applications.
引用
收藏
页码:16 / 23
页数:8
相关论文
共 50 条
  • [1] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [2] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [4] SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS
    Son, Hwijae
    Jang, Jin woo
    Han, Woo jin
    Hwang, Hyung ju
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1679 - 1705
  • [5] Enhanced physics-informed neural networks for hyperelasticity
    Abueidda, Diab W.
    Koric, Seid
    Guleryuz, Erman
    Sobh, Nahil A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (07) : 1585 - 1601
  • [6] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):
  • [7] Physics-informed neural networks for consolidation of soils
    Zhang, Sheng
    Lan, Peng
    Li, Hai-Chao
    Tong, Chen-Xi
    Sheng, Daichao
    ENGINEERING COMPUTATIONS, 2022, 39 (07) : 2845 - 2865
  • [8] Physics-Informed Neural Networks for Quantum Control
    Norambuena, Ariel
    Mattheakis, Marios
    Gonzalez, Francisco J.
    Coto, Raul
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [9] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Munoz-Matute, Judit
    Pardo, David
    Paszynski, Maciej
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 425
  • [10] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Muñoz-Matute, Judit
    Pardo, David
    Paszyński, Maciej
    Computer Methods in Applied Mechanics and Engineering, 2024, 425