PINNProv: Provenance for Physics-Informed Neural Networks
被引:1
|
作者:
de Oliveira, Lyncoln S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, Brazil
Univ Fed Fluminense, Inst Comp, IC UFF, Niteroi, RJ, BrazilUniv Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, Brazil
de Oliveira, Lyncoln S.
[1
,2
]
Kunstmann, Liliane
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, Brazil
Kunstmann, Liliane
[1
]
Pina, Debora
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, Brazil
Pina, Debora
[1
]
de Oliveira, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Fluminense, Inst Comp, IC UFF, Niteroi, RJ, BrazilUniv Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, Brazil
de Oliveira, Daniel
[2
]
Mattoso, Marta
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, Brazil
Mattoso, Marta
[1
]
机构:
[1] Univ Fed Rio de Janeiro, COPPE, UFRJ, Rio De Janeiro, Brazil
[2] Univ Fed Fluminense, Inst Comp, IC UFF, Niteroi, RJ, Brazil
Machine Learning is being used increasingly in different application areas. Physics-Informed Neural Networks (PINN) stand out, adapting neural networks to predict solutions to Physics phenomena. Incorporating Physics knowledge into the loss function of a neural network, PINNs revolutionize the solutions of partial differential equations. Considering the lack of support for analytics and reproducibility of the trained models, in this paper we propose the capture and use of provenance data, aimed at the analysis of PINN models. We conducted experiments using TensorFlow and DeepXDE, in a high-performance computing environment. Our experiments show the contributions of these provenance queries in different PINN applications.
机构:
US Army Engineer Res & Dev Ctr, Informat & Technol Lab, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USAUS Army Engineer Res & Dev Ctr, Informat & Technol Lab, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USA
Trahan, Corey
Loveland, Mark
论文数: 0引用数: 0
h-index: 0
机构:
US Army Engineer Res & Dev Ctr, Informat & Technol Lab, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USAUS Army Engineer Res & Dev Ctr, Informat & Technol Lab, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USA
Loveland, Mark
Dent, Samuel
论文数: 0引用数: 0
h-index: 0
机构:
US Army Engineer Res & Dev Ctr, Informat & Technol Lab, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USAUS Army Engineer Res & Dev Ctr, Informat & Technol Lab, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USA
机构:
Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, ChileInstituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile
Rojas, Sergio
Maczuga, Pawel
论文数: 0引用数: 0
h-index: 0
机构:
AGH University of Krakow, PolandInstituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile
Maczuga, Pawel
论文数: 引用数:
h-index:
机构:
Muñoz-Matute, Judit
论文数: 引用数:
h-index:
机构:
Pardo, David
Paszyński, Maciej
论文数: 0引用数: 0
h-index: 0
机构:
AGH University of Krakow, PolandInstituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile