On unique tensor rank decomposition of 3-tensors

被引:1
|
作者
Gubkin, Pavel [1 ,2 ,3 ,4 ]
机构
[1] St Petersburg State Univ, St Petersburg, Russia
[2] Russian Acad Sci, St Petersburg Dept, Steklov Math Inst, St Petersburg, Russia
[3] St Petersburg State Univ, Univ Skaya nab 7-9, St Petersburg 199034, Russia
[4] Russian Acad Sci, St Petersburg Dept, Steklov Math Inst, Fontanka 27, St Petersburg 191023, Russia
来源
LINEAR & MULTILINEAR ALGEBRA | 2024年 / 72卷 / 11期
关键词
Kruskal theorem; tensor rank; tensor decomposition; CANONICAL POLYADIC DECOMPOSITION;
D O I
10.1080/03081087.2023.2211718
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer to a question posed recently in reference [Lovitz B, Petrov F. A generalization of Kruskal's theorem on tensor decomposition. Available at arXiv 2103.15633; 2021], proving the conjectured sufficient minimality and uniqueness condition of the 3-tensor decomposition.
引用
收藏
页码:1860 / 1866
页数:7
相关论文
共 50 条
  • [21] Robust Multilinear Decomposition of Low Rank Tensors
    Han, Xu
    Albera, Laurent
    Kachenoura, Amar
    Shu, Huazhong
    Senhadji, Lotfi
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2018), 2018, 10891 : 3 - 12
  • [22] Condition numbers for the tensor rank decomposition
    Vannieuwenhoven, Nick
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 535 : 35 - 86
  • [23] Asymptotic tensor rank of graph tensors: beyond matrix multiplication
    Matthias Christandl
    Péter Vrana
    Jeroen Zuiddam
    computational complexity, 2019, 28 : 57 - 111
  • [24] Asymptotic tensor rank of graph tensors: beyond matrix multiplication
    Christandl, Matthias
    Vrana, Peter
    Zuiddam, Jeroen
    COMPUTATIONAL COMPLEXITY, 2019, 28 (01) : 57 - 111
  • [25] ON THE TENSOR SVD AND THE OPTIMAL LOW RANK ORTHOGONAL APPROXIMATION OF TENSORS
    Chen, Jie
    Saad, Yousef
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (04) : 1709 - 1734
  • [26] Efficient tree decomposition of high-rank tensors
    Jermyn, Adam S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 377 : 142 - 154
  • [27] TRIPLE DECOMPOSITION AND TENSOR RECOVERY OF THIRD ORDER TENSORS
    Qi, Liqun
    Chen, Yannan
    Bakshi, Mayank
    Zhang, Xinzhen
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (01) : 299 - 329
  • [28] Time-aware tensor decomposition for sparse tensors
    Ahn, Dawon
    Jang, Jun-Gi
    Kang, U.
    MACHINE LEARNING, 2022, 111 (04) : 1409 - 1430
  • [29] Time-Aware Tensor Decomposition for Sparse Tensors
    Ahn, Dawon
    Jang, Jun-Gi
    Kang, U.
    2021 IEEE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2021,
  • [30] Unique decomposition for a polynomial of low rank
    Ballico, Edoardo
    Bernardi, Alessandra
    ANNALES POLONICI MATHEMATICI, 2013, 108 (03) : 219 - 224