On unique tensor rank decomposition of 3-tensors

被引:1
|
作者
Gubkin, Pavel [1 ,2 ,3 ,4 ]
机构
[1] St Petersburg State Univ, St Petersburg, Russia
[2] Russian Acad Sci, St Petersburg Dept, Steklov Math Inst, St Petersburg, Russia
[3] St Petersburg State Univ, Univ Skaya nab 7-9, St Petersburg 199034, Russia
[4] Russian Acad Sci, St Petersburg Dept, Steklov Math Inst, Fontanka 27, St Petersburg 191023, Russia
来源
LINEAR & MULTILINEAR ALGEBRA | 2024年 / 72卷 / 11期
关键词
Kruskal theorem; tensor rank; tensor decomposition; CANONICAL POLYADIC DECOMPOSITION;
D O I
10.1080/03081087.2023.2211718
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer to a question posed recently in reference [Lovitz B, Petrov F. A generalization of Kruskal's theorem on tensor decomposition. Available at arXiv 2103.15633; 2021], proving the conjectured sufficient minimality and uniqueness condition of the 3-tensor decomposition.
引用
收藏
页码:1860 / 1866
页数:7
相关论文
共 50 条
  • [31] Time-aware tensor decomposition for sparse tensors
    Dawon Ahn
    Jun-Gi Jang
    U Kang
    Machine Learning, 2022, 111 : 1409 - 1430
  • [32] The Generalized Tensor Decomposition with Heterogeneous Tensor Product for Third-Order Tensors
    Liu, Yun-Yang
    Zhao, Xi-Le
    Ding, Meng
    Wang, Jianjun
    Jiang, Tai-Xiang
    Huang, Ting-Zhu
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (03)
  • [33] A Normal Form Algorithm for Tensor Rank Decomposition
    Telen, Simon
    Vannieuwenhoven, Nick
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2022, 48 (04):
  • [34] Adaptive Rank Selection for Tensor Ring Decomposition
    Sedighin, Farnaz
    Cichocki, Andrzej
    Phan, Anh-Huy
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (03) : 454 - 463
  • [35] Robust Low-Rank and Sparse Tensor Decomposition for Low-Rank Tensor Completion
    Shi, Yuqing
    Du, Shiqiang
    Wang, Weilan
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 7138 - 7143
  • [36] Sparse and Low-Rank Tensor Decomposition
    Shah, Parikshit
    Rao, Nikhil
    Tang, Gongguo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [37] Active thermography based on tensor rank decomposition
    Spaeth, Peter W.
    Takunju, Peter L.
    Zalameda, Joseph N.
    THERMOSENSE: THERMAL INFRARED APPLICATIONS XLIV, 2022, 12109
  • [38] Identifiability of Rank-3 Tensors
    Ballico, Edoardo
    Bernardi, Alessandra
    Santarsiero, Pierpaola
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (04)
  • [39] Identifiability of Rank-3 Tensors
    Edoardo Ballico
    Alessandra Bernardi
    Pierpaola Santarsiero
    Mediterranean Journal of Mathematics, 2021, 18
  • [40] CANONICAL DECOMPOSITION OF 4TH RANK TENSORS OF ELASTICITY
    PRATZ, J
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1983, 2 (06): : 893 - 913