Unique decomposition for a polynomial of low rank

被引:5
|
作者
Ballico, Edoardo [1 ]
Bernardi, Alessandra [2 ]
机构
[1] Univ Trento, Dept Math, I-38123 Povo, TN, Italy
[2] Univ Turin, Dipartimento Matemat Giuseppe Peano, I-10123 Turin, Italy
关键词
Waring problem; polynomial decomposition; symmetric rank; symmetric tensors; Veronese varieties; secant varieties;
D O I
10.4064/ap108-3-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a homogeneous polynomial of degree d in m+1 variables defined over an algebraically closed field of characteristic 0 and suppose that F belongs to the sth secant variety of the d-uple Veronese embedding of P-m into P((m+d)(d))(-1) but that its minimal decomposition as a sum of dth powers of linear forms requires more than s summands. We show that if s <= d then F can be uniquely written as F = M-1(d) + ... + M-t(d) + Q, where M-1, ... , M-t are linear forms with t <= (d - 1)/2, and Q is a binary form such that Q = Sigma(q)(i=1) l(i)(d-di)m(i) with l(i)'s linear forms and m(i)'s forms of degree d(i) such that Sigma(d(i) + 1) = s - t.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 50 条
  • [1] Unique Sparse Decomposition of Low Rank Matrices
    Jin, Dian
    Bing, Xin
    Zhang, Yuqian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (04) : 2452 - 2484
  • [2] Unique sparse decomposition of low rank matrices
    Jin, Dian
    Bing, Xin
    Zhang, Yuqian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [3] Rank order polynomial decomposition for image compression
    Egger, O
    Gruter, R
    Vesin, JM
    Kunt, M
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2641 - 2644
  • [4] Identifiability of an X-Rank Decomposition of Polynomial Maps
    Comon, Pierre
    Qi, Yang
    Usevich, Konstantin
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2017, 1 (01): : 388 - 414
  • [5] On unique tensor rank decomposition of 3-tensors
    Gubkin, Pavel
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (11): : 1860 - 1866
  • [6] Decomposition of homogeneous polynomials with low rank
    Ballico, Edoardo
    Bernardi, Alessandra
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1141 - 1149
  • [7] Decomposition of homogeneous polynomials with low rank
    Edoardo Ballico
    Alessandra Bernardi
    Mathematische Zeitschrift, 2012, 271 : 1141 - 1149
  • [8] Stochastic Bounds with a Low Rank Decomposition
    Busic, Ana
    Fourneau, Jean-Michel
    Ben Mamoun, Mouad
    STOCHASTIC MODELS, 2014, 30 (04) : 494 - 520
  • [9] Beyond Low Rank plus Sparse: Multiscale Low Rank Matrix Decomposition
    Ong, Frank
    Lustig, Michael
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (04) : 672 - 687
  • [10] Rank-order polynomial subband decomposition for medical image compression
    Grüter, R
    Egger, O
    Vesin, JM
    Kunt, M
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19 (10) : 1044 - 1052