On unique tensor rank decomposition of 3-tensors

被引:1
|
作者
Gubkin, Pavel [1 ,2 ,3 ,4 ]
机构
[1] St Petersburg State Univ, St Petersburg, Russia
[2] Russian Acad Sci, St Petersburg Dept, Steklov Math Inst, St Petersburg, Russia
[3] St Petersburg State Univ, Univ Skaya nab 7-9, St Petersburg 199034, Russia
[4] Russian Acad Sci, St Petersburg Dept, Steklov Math Inst, Fontanka 27, St Petersburg 191023, Russia
来源
LINEAR & MULTILINEAR ALGEBRA | 2024年 / 72卷 / 11期
关键词
Kruskal theorem; tensor rank; tensor decomposition; CANONICAL POLYADIC DECOMPOSITION;
D O I
10.1080/03081087.2023.2211718
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer to a question posed recently in reference [Lovitz B, Petrov F. A generalization of Kruskal's theorem on tensor decomposition. Available at arXiv 2103.15633; 2021], proving the conjectured sufficient minimality and uniqueness condition of the 3-tensor decomposition.
引用
收藏
页码:1860 / 1866
页数:7
相关论文
共 50 条
  • [1] ON GENERIC IDENTIFIABILITY OF 3-TENSORS OF SMALL RANK
    Chiantini, Luca
    Ottaviani, Giorgio
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (03) : 1018 - 1037
  • [2] Spectral partitioning of large and sparse 3-tensors using low-rank tensor approximation
    Elden, Lars
    Dehghan, Maryam
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2022, 29 (05)
  • [3] Typical ranks of certain 3-tensors and absolutely full column rank tensors
    Miyazaki, Mitsuhiro
    Sumi, Toshio
    Sakata, Toshio
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (01): : 193 - 205
  • [4] Rank of 3-tensors with 2 slices and Kronecker canonical forms
    Sumi, Toshio
    Miyazaki, Mitsuhiro
    Sakata, Toshio
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (10) : 1858 - 1868
  • [5] On Low Rank Approximation Of 3-Tensors Based On Regularized t-SVD
    Dong, Hailing
    Cheng, Fuying
    Yang, Ming
    Liu, Wen
    Zhang, Xiaoting
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4827 - 4830
  • [6] About the maximal rank of 3-tensors over the real and the complex number field
    Sumi, Toshio
    Miyazaki, Mitsuhiro
    Sakata, Toshio
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (04) : 807 - 822
  • [7] About the maximal rank of 3-tensors over the real and the complex number field
    Toshio Sumi
    Mitsuhiro Miyazaki
    Toshio Sakata
    Annals of the Institute of Statistical Mathematics, 2010, 62 : 807 - 822
  • [8] Examples on the Non-Uniqueness of the Rank 1 Tensor Decomposition of Rank 4 Tensors
    Ballico, Edoardo
    SYMMETRY-BASEL, 2022, 14 (09):
  • [9] BOUNDS ON THE RANKS OF SOME 3-TENSORS
    ATKINSON, MD
    LLOYD, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 31 (JUN) : 19 - 31
  • [10] On the generic and typical ranks of 3-tensors
    Friedland, Shmuel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (03) : 478 - 497