Asymptotic tensor rank of graph tensors: beyond matrix multiplication

被引:0
|
作者
Matthias Christandl
Péter Vrana
Jeroen Zuiddam
机构
[1] University of Copenhagen,Department of Mathematical Sciences
[2] Budapest University of Technology and Economics,Department of Geometry
[3] Centrum Wiskunde & Informatica Science Park 123,undefined
来源
computational complexity | 2019年 / 28卷
关键词
tensor rank; graph tensors; subrank; Dicke tensors; algebraic complexity; matrix multiplication; 05D40; 05C99; 68Q17; 68Q12; 15A69; 81P45;
D O I
暂无
中图分类号
学科分类号
摘要
We present an upper bound on the exponent of the asymptotic behaviour of the tensor rank of a family of tensors defined by the complete graph on k vertices. For k≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k \geq 4}$$\end{document}, we show that the exponent per edge is at most 0.77, outperforming the best known upper bound on the exponent per edge for matrix multiplication (k = 3), which is approximately 0.79. We raise the question whether for some k the exponent per edge can be below 2/3, i.e. can outperform matrix multiplication even if the matrix multiplication exponent equals 2. In order to obtain our results, we generalize to higher-order tensors a result by Strassen on the asymptotic subrank of tight tensors and a result by Coppersmith and Winograd on the asymptotic rank of matrix multiplication. Our results have applications in entanglement theory and communication complexity.
引用
收藏
页码:57 / 111
页数:54
相关论文
共 50 条
  • [1] Asymptotic tensor rank of graph tensors: beyond matrix multiplication
    Christandl, Matthias
    Vrana, Peter
    Zuiddam, Jeroen
    COMPUTATIONAL COMPLEXITY, 2019, 28 (01) : 57 - 111
  • [2] Geometric Rank of Tensors and Subrank of Matrix Multiplication
    Kopparty, Swastik
    Moshkovitz, Guy
    Zuiddam, Jeroen
    DISCRETE ANALYSIS, 2023, : 1 - 25
  • [3] On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry
    Landsberg, J. M.
    Michalek, Mateusz
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2017, 1 (01): : 2 - 19
  • [4] BEYOND THE CACTUS RANK OF TENSORS
    Ballico, Edoardo
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (05) : 1587 - 1598
  • [5] SYMMETRIC TENSORS AND SYMMETRIC TENSOR RANK
    Comon, Pierre
    Golub, Gene
    Lim, Lek-Heng
    Mourrain, Bernard
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) : 1254 - 1279
  • [6] NEW UNIFORM AND ASYMPTOTIC UPPER BOUNDS ON THE TENSOR RANK OF MULTIPLICATION IN EXTENSIONS OF FINITE FIELDS
    Pieltant, Julia
    Randriam, Hugues
    MATHEMATICS OF COMPUTATION, 2015, 84 (294) : 2023 - 2045
  • [7] Multiplication algorithm in a finite field and tensor rank of the multiplication
    Ballet, R
    Rolland, R
    JOURNAL OF ALGEBRA, 2004, 272 (01) : 173 - 185
  • [8] On the tensor rank of the multiplication in the finite fields
    Ballet, Stephane
    JOURNAL OF NUMBER THEORY, 2008, 128 (06) : 1795 - 1806
  • [9] ON THE ASYMPTOTIC COMPLEXITY OF MATRIX MULTIPLICATION
    COPPERSMITH, D
    WINOGRAD, S
    SIAM JOURNAL ON COMPUTING, 1982, 11 (03) : 472 - 492
  • [10] Equivalent polyadic decompositions of matrix multiplication tensors
    Berger, Guillaume O.
    Absil, Pierre-Antoine
    Jungers, Raphael M.
    Van Barel, Marc
    De Lathauwer, Lieven
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 406