Geometric Rank of Tensors and Subrank of Matrix Multiplication

被引:3
|
作者
Kopparty, Swastik [1 ]
Moshkovitz, Guy [2 ,3 ]
Zuiddam, Jeroen [4 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] CUNY, Baruch Coll, New York, NY USA
[3] CUNY, Grad Ctr, New York, NY USA
[4] Univ Amsterdam, Amsterdam, Netherlands
基金
美国国家科学基金会;
关键词
algebraic complexity theory; combinatorics; matrix multiplication; tensors; subrank; analytic rank; slice rank; hypergraphs; independence number; COMPLEXITY;
D O I
10.19086/da.73322
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by problems in algebraic complexity theory (e.g., matrix multiplica-tion) and extremal combinatorics (e.g., the cap set problem and the sunflower problem), we introduce the geometric rank as a new tool in the study of tensors and hypergraphs. We prove that the geometric rank is an upper bound on the subrank of tensors and the independence number of hypergraphs. We prove that the geometric rank is smaller than the slice rank of Tao, and relate geometric rank to the analytic rank of Gowers and Wolf in an asymptotic fashion. As a first application, we use geometric rank to prove a tight upper bound on the (border) subrank of the matrix multiplication tensors, matching Strassen's well-known lower bound from 1987.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [1] Asymptotic tensor rank of graph tensors: beyond matrix multiplication
    Matthias Christandl
    Péter Vrana
    Jeroen Zuiddam
    computational complexity, 2019, 28 : 57 - 111
  • [2] Asymptotic tensor rank of graph tensors: beyond matrix multiplication
    Christandl, Matthias
    Vrana, Peter
    Zuiddam, Jeroen
    COMPUTATIONAL COMPLEXITY, 2019, 28 (01) : 57 - 111
  • [3] On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry
    Landsberg, J. M.
    Michalek, Mateusz
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2017, 1 (01): : 2 - 19
  • [4] A Gap in the Subrank of Tensors
    Christandl, Matthias
    Gesmundo, Fulvio
    Zuiddam, Jeroen
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2023, 7 (04) : 742 - 767
  • [5] Maximal border subrank tensors
    Chang, Chia-Yu
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (03): : 525 - 535
  • [6] Equivalent polyadic decompositions of matrix multiplication tensors
    Berger, Guillaume O.
    Absil, Pierre-Antoine
    Jungers, Raphael M.
    Van Barel, Marc
    De Lathauwer, Lieven
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 406
  • [7] Subrank and optimal reduction of scalar multiplications to generic tensors
    Derksen, Harm
    Makam, Visu
    Zuiddam, Jeroen
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (02):
  • [8] Geometric aspects of Iterated Matrix Multiplication
    Gesmundo, Fulvio
    JOURNAL OF ALGEBRA, 2016, 461 : 42 - 64
  • [9] A geometric approach to Boolean matrix multiplication
    Lingas, A
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2002, 2518 : 501 - 510
  • [10] NEW LOWER BOUNDS FOR THE RANK OF MATRIX MULTIPLICATION
    Landsberg, J. M.
    SIAM JOURNAL ON COMPUTING, 2014, 43 (01) : 144 - 149