Geometric Rank of Tensors and Subrank of Matrix Multiplication

被引:3
|
作者
Kopparty, Swastik [1 ]
Moshkovitz, Guy [2 ,3 ]
Zuiddam, Jeroen [4 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] CUNY, Baruch Coll, New York, NY USA
[3] CUNY, Grad Ctr, New York, NY USA
[4] Univ Amsterdam, Amsterdam, Netherlands
基金
美国国家科学基金会;
关键词
algebraic complexity theory; combinatorics; matrix multiplication; tensors; subrank; analytic rank; slice rank; hypergraphs; independence number; COMPLEXITY;
D O I
10.19086/da.73322
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by problems in algebraic complexity theory (e.g., matrix multiplica-tion) and extremal combinatorics (e.g., the cap set problem and the sunflower problem), we introduce the geometric rank as a new tool in the study of tensors and hypergraphs. We prove that the geometric rank is an upper bound on the subrank of tensors and the independence number of hypergraphs. We prove that the geometric rank is smaller than the slice rank of Tao, and relate geometric rank to the analytic rank of Gowers and Wolf in an asymptotic fashion. As a first application, we use geometric rank to prove a tight upper bound on the (border) subrank of the matrix multiplication tensors, matching Strassen's well-known lower bound from 1987.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [21] A Geometric Approach to Low-Rank Matrix Completion
    Dai, Wei
    Kerman, Ely
    Milenkovic, Olgica
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (01) : 237 - 247
  • [22] DECOMPOSING TENSORS WITH STRUCTURED MATRIX FACTORS REDUCES TO RANK-1 APPROXIMATIONS
    Comon, Pierre
    Sorensen, Mikael
    Tsigaridas, Elias
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3858 - 3861
  • [23] Rank-r approximation of tensors using image-as-matrix representation
    Wang, HC
    Ahuja, N
    2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, : 346 - 353
  • [24] EXPLOITING SYMMETRY IN TENSORS FOR HIGH PERFORMANCE: MULTIPLICATION WITH SYMMETRIC TENSORS
    Schatz, Martin D.
    Low, Tze Meng
    van de Geijn, Robert A.
    Kolda, Tamara G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05): : C453 - C479
  • [25] Lax tensors, killing tensors and geometric duality
    Baleanu, D
    Karasu, A
    MODERN PHYSICS LETTERS A, 1999, 14 (37) : 2587 - 2594
  • [26] Low-Rank Matrix Completion with Geometric Performance Guarantees
    Dai, Wei
    Kerman, Ely
    Milenkovic, Olgica
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3740 - 3743
  • [27] Additive maps of rank r tensors and symmetric tensors
    Chooi, Wai Leong
    Kwa, Kiam Heong
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (06): : 1269 - 1293
  • [28] The inverse, rank and product of tensors
    Bu, Changjiang
    Zhang, Xu
    Zhou, Jiang
    Wang, Wenzhe
    Wei, Yimin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 446 : 269 - 280
  • [29] Tensors of nonnegative rank two
    Allman, Elizabeth S.
    Rhodes, John A.
    Sturmfels, Bernd
    Zwiernik, Piotr
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 473 : 37 - 53
  • [30] BEYOND THE CACTUS RANK OF TENSORS
    Ballico, Edoardo
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (05) : 1587 - 1598